- Alice: Key creation
 - Pick good basis $\vec{v_1}, \ldots, \vec{v_n}$ and put in rows of matrix V
 - Choose matrix U with integer coefficients such that $det(U) = \pm 1$
 - Compute bad basis as rows $\vec{w_1}, \ldots, \vec{w_n}$ of W = UV
 - Publish public key $\vec{w_1}, \ldots, \vec{w_n}$
- Bob: Encryption
 - Plaintext vector $\vec{m} = (m_1, \ldots, m_n) \in \mathbb{Z}^n$
 - $\vec{v} = \vec{m}W = m_1\vec{w_1} + \cdots + m_n\vec{w_n} \in L$
 - Choose small random vector $\vec{r} \in \mathbb{R}^n$
 - Send ciphertext $\vec{e} = \vec{v} + \vec{r} \in \mathbb{R}^n$
- Alice: Decryption
 - Use good basis to recover $\vec{v} \in L$ (see Babai's on next slide)
 - $\vec{m} = \vec{v} W^{-1}$

Let $L \subset \mathbb{R}^n$ be a lattice of dimension n with basis $\mathcal{B} = \{\vec{v_1}, \dots, \vec{v_n}\}$ and let $\vec{e} \in \mathbb{R}^n$ be an arbitrary vector.

If the basis vectors are sufficiently orthogonal, the following \vec{v} solves the CVP:

- Write $\vec{e} = t_1 \vec{v_1} + \dots + t_n \vec{v_n}$ with $t_1, \dots, t_n \in \mathbb{R}$ $(\vec{t} = \vec{e} \cdot V^{-1})$
- Set $a_i = \lfloor t_i \rceil$ for $1 \le i \le n$ (i.e. round t_i) $(\vec{a} = \text{Round}(\vec{t})$)
- Then $\vec{v} = a_1 \vec{v_1} + \cdots + a_n \vec{v_n}$ $(\vec{v} = \vec{a}.V)$

1. Use the values of V and W given in the Mathematica notebook for today. Let $L \subset \mathbb{R}^3$ be the lattice with basis in the rows of V.

- (a) Verify that *W* is also a basis for *L*.
- (b) Compute the Hadamard ratios of V and W.Is V a good choice for a private key for GGH?Is W a good choice for a public key for GGH?
- (c) Encrypt $m = \{3, 7, 8\}$ using the ephemeral $r = \{-1, 1, 1\}$ What is the ciphertext?
- (d) Verify your ciphertext by decrypting using V.What plaintext do you get if you decrypt using the skewed basis W?
- (e) You receive the ciphertext $e = \{-828256, -634219, 467126\}$. Use V to decrypt.

2. Use the values given in the Mathematica notebook for the public basis W, plaintext m, random vector r, and message e_1 .

- (a) Compute the Hadamard ratio of *W* to confirm that it is a good choice for a public key.
- (b) Encrypt the plaintext *m* using *r*. What is the ciphertext?
- (c) Suppose Eve intercepts the message e₁ and tries to decrypt using W.What will Eve get for the plaintext?
- (d) Now use Mathematica's LatticeReduce[W] to apply the LLL algorithm to generate a more orthogonal basis V for the lattice.
 - (i) Compute the Hadamard ratio of V.
 - (ii) Use V to decrypt e_1 . What is the plaintext recovered in this situation?