Theorem 6.6: $E: Y^2 = X^3 + AX + B$, $4A^3 + 27B^2 \neq 0$

Let P_1 and P_2 be two points on E

- If $P_1 = \mathcal{O}$, then $P_1 + P_2 = P_2$ If $P_2 = \mathcal{O}$, then $P_1 + P_2 = P_1$
- Otherwise, write $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$
 - If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 = -P_2$ in *E* and $P_1 + P_2 = O$
 - Otherwise, define

$$\lambda = \begin{cases} (y_2 - y_1)(x_2 - x_1)^{-1} & \text{if } P_1 \neq P_2 \\ \\ (3x_1^2 + A)(2y_1)^{-1} & \text{if } P_1 = P_2 \end{cases}$$

Then $P_1 + P_2 = (x_3, y_3)$ where

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$

1

Let $E: Y^2 = X^3 + 17X + 3$ over \mathbb{F}_{59} and let P = (3, 50) and Q = (41, 1)

- 1. Show P and Q lie on $E(\mathbb{F}_{59})$ but do not lie on the curve if we do not reduce mod 59
- 2. Find P + Q by applying Theorem 6.6 by hand
- 3. Find 2P by applying Theorem 6.6 by hand
- 4. Use the double and add algorithm to compute 37P For this problem, you may use https://andrea.corbellini.name/ecc/interactive/modk-add.html to add two points or to double a point.
- 5. According to Hasse's Theorem, what is the minimum number of points that an elliptic curve over \mathbb{F}_{59} can have? What is the maximum number? Is this consistent with the information from the website for our particular curve?