Why Elliptic Curve Cryptography?

Table 6.1 Bit lengths of public-key algorithms for different security levels

Algorithm Family	Cryptosystems	Security Level (bits)			
		(80)	128	192	256
Integer factorization	RSA	(1024 bits)	3072 bits	7680 bits	15360 bits
Discrete logarithm	DH, DSA, Elgamal	(1024 bits)	3072 bits	7680 bits	15360 bits
Elliptic curves	ECDH, ECDSA	(160 bits)	256 bits	384 bits	512 bits
Symmetric-key	e.g., AES	(80 bits)	128 bits	192 bits	256 bits

From Paar, Pelzl, and Güneysu, pg. 186

- Bitcoin uses ECDSA https://en.bitcoin.it/wiki/Protocol_documentation#Signatures

 Curve secp256k1 specified in http://www.secg.org/sec2-v2.pdf,pg9
- amazon.com (currently) uses X25519, which is ECDHE with Curve25519
 Curve25519 uses a 256-bit key with 128-bits of security

1. Use Mathematica to draw the following elliptic curves

(a) Let
$$E: Y^2 = X^3 - 5X + 6$$

Verify $4A^3 + 27B^2 \neq 0$
How many points on E are their own additive inverse?
i.e. How many points on E satisfy $P = -P$?

(b)
$$E: Y^2 = X^3 - 4X + 1$$

Verify $4A^3 + 27B^2 \neq 0$
How many points on E are their own additive inverse?

(c)
$$E: Y^2 = X^3 - 3X + 2$$

Verify $4A^3 + 27B^2 = 0$
By looking at the graph, why is this a problem for defining addition on E ?

(d)
$$E: Y^2=X^3$$

Verify $4A^3+27B^2=0$
By looking at the graph, why is this a problem for defining addition on E ?

2. Consider the elliptic curve $E: Y^2 = X^3 - 6X + 5$

- (a) Verify that $P_1 = (-2,3)$ and $P_2 = (2,1)$ lie on E
- (b) Use the geometric description of addition on E to find $P_1 + P_2$
- (c) Use the geometric description of addition on E to find $2P_1$
- (d) Use Theorem 6.6 to verify your answers to (b) and (c)
- (e) Verify that $Q_1=\left(\frac{1}{4},-\frac{15}{8}\right)$ and $Q_2=\left(\frac{58}{9},\frac{413}{27}\right)$ lie on E
- (f) Use Theorem 6.6 to find $Q_2 + Q_1$ and $Q_2 Q_1$
 - Note: $-Q_1$ means the additive inverse of Q_1 in E