Using Pollard's ρ to solve the DLP $g^{\mathsf{x}} \equiv h \mod p$

1. Define
$$f: \mathbb{F}_p^* \to \mathbb{F}_p^*$$
:
$$f(x) = \begin{cases} gx & \text{if } 0 \le x < p/3 \\ x^2 & \text{if } p/3 \le x < 2p/3 \\ hx & \text{if } 2p/3 \le x < p \end{cases}$$

2. Define sequence $x_0 = 1$, $x_{i+1} = f(x_i) = g^{\alpha_i} h^{\beta_i}$ where

$$\alpha_{i+1} = \begin{cases} \alpha_i + 1 & \text{if } 0 \le x_i < p/3 \\ 2\alpha_i & \text{if } p/3 \le x_i < 2p/3 \\ \alpha_i & \text{if } 2p/3 \le x_i < p \end{cases} \qquad \beta_{i+1} = \begin{cases} \beta_i & \text{if } 0 \le x_i < p/3 \\ 2\beta_i & \text{if } p/3 \le x_i < 2p/3 \\ \beta_i + 1 & \text{if } 2p/3 \le x_i < p \end{cases}$$

- 3. Look for collision in sequences $\{x_i\}=\left\{g^{\alpha_i}h^{\beta_i}\right\}$ and $\{y_i\}=\{x_{2i}\}=\left\{g^{\gamma_i}h^{\delta_i}\right\}$
- 4. This gives $g^u \equiv h^v \mod p$. Take v-th root

1. The purpose of this exercise is to verify that Pollard's ρ will give a collision at $x_i = x_{2i}$

Consider the function $f: \mathbb{Z}/85\mathbb{Z} \to \mathbb{Z}/85\mathbb{Z}$ defined by $f(x) = 5x \mod 85$ and the sequence $\{x_i\}$ formed by $x_0 = 1$, $x_{i+1} = f(x_i)$

- (a) What are the first 4 terms in the sequence?
- (b) Use the Mathematica notebook to list the first 40 terms of the sequence.
- (c) What is T, the length of the tail? What is M, the length of the loop?
- (d) What is the value of x_M ? Of x_{2M} ?

2. Consider applying Pollard's ρ **to the DLP** 196^x \equiv 787 mod 1031

- (a) What is the mixing function f(x) in this case?
- (b) Fill in the values for the x_1 and y_1 terms in the sequences. Also verify that the values for x_2 and y_2 are correct.

i	Xi	α_i	β_i	Уi	γ_i	δ_i
0	1	0	0	1	0	0
1						
2	269	2	0	191	4	0

- (c) Use the pollardsRho[] function defined in the Mathematica notebook to find the collision $x_i = y_i$
- (d) Now finish solving the DLP.