Work on these with your partner(s) at the board

- 1. Let $X = \{1, 2, 3, 4\}$, $Y = \{A, B, C\}$, and $Z = \{\circ, \triangle, \Box, \heartsuit\}$ Give an example of each type of function
 - (a) $f: X \rightarrow Y$ is onto but not one-one
 - (b) $g: Y \rightarrow Z$ is one-one but not onto
 - (c) $h: Z \to X$ is one-one and onto
 - (d) $k: Y \rightarrow X$ is neither one-one nor onto
- 2. Define $m : \mathbb{Z} \to \{0, 1, 2, 3, 4\}$ by m(n) = r where r is the remainder when n is divided by 5.
 - (a) What is *m*(6)? *m*(10)? *m*(−3)? *m*(3)?
 - (b) What is $m(\{7, 8\})$?
 - (c) What is $m^{-1}(0)$? $m^{-1}(1)$? $m^{-1}(\{2,3\})$?

Note: It may help to review the quotient remainder property from Week 4.

- 5. Let S be the set of all strings of 0's and 1's of length 3 (e.g. $000 \in S$, $101 \in S$), and let $A = \{a, b, c\}$.
 - (a) List the elements of S
 - (b) Define a bijection $f: S \rightarrow \mathcal{P}(A)$
- 6. Let *T* be the set of all strings of 0's and 1's of length *n*, and let $B = \{b_1, b_2, \dots, b_n\}$.
 - (a) What is |T|?
 - (b) Define a bijection $g: T \to \mathcal{P}(B)$
- 7. Give an example of a function $f:\mathbb{N}\to\mathbb{Z}$ that is one-one but not onto
- 8. Give an example of a function $g:\mathbb{Z}\to\mathbb{Z}$ that is one-one but not onto
- 9. Let *E* be the set of even natural numbers. Give an example of a bijection $h : \mathbb{N} \to E$
- 10. Give an example of a bijection $k : \mathbb{N} \to \mathbb{Z}$