Work on these with your partner(s) at the board

- 1. Let P(x) be the predicate " $x^2 \ge x$ "
 - (a) What are the truth values of P(2)? $P(\frac{1}{2})$?, P(-1)?
 - (b) If the domain is $D = \mathbb{Z}$, find the truth set of P(x)
 - (c) If the domain is $D = \mathbb{R}$, find the truth set of P(x)
- 2. Let Q(x) be the predicate " $x^4 \ge x$ ". Determine the truth value of each statement.
 - (a) $\forall x \in \mathbb{Z}, Q(x)$
 - (b) $\forall x \in \mathbb{R}, Q(x)$
 - (c) $\exists x \in \mathbb{R}$ such that Q(x)

- 3. Rewrite the following informally as English sentences without quantifiers or variables:
 - (a) $\forall x \in \mathbb{Z}$, if x > 0, then $x^2 > 0$
 - (b) $\exists x \in \mathbb{R}$ such that $x^2 = 9$
- 4. Let R be the domain of the predicate variable x. Which of the following are true and which are false? Give counter examples for those that are false.
 (a) x > 2 ⇒ x² > 4
 - (b) $x^2 > 4 \Rightarrow x > 2$
 - (c) $x^2 > 4 \Leftrightarrow |x| > 2$

Epp, Exercise 3.22

5. Determine the truth value of each statement.

(a) $\exists a, b, c \in \mathbb{Z}$, all non-zero, such that $a^2 + b^2 = c^2$ (b) $\exists a, b, c \in \mathbb{Z}$, all non-zero, such that $a^3 + b^3 = c^3$

- 6. Rewrite the following statements formally as a predicate with a quantifier. Be certain to define the domain. Then write formal and informal negations.
 - (a) There is a professor at Wheaton who went to graduate school at Northwestern.
 - (b) All customers must wear shoes.
- 7. Consider the statement: $\forall x \in \mathbb{R}$, if $x^2 > 9$ then x > 3 or x < -3Write the negation, the converse, the inverse, and the contrapositive. Indicate which are true and which are false.

- 8. Determine the truth of each of the following.
 - (a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = y + x$
 - (b) $\exists x \in \mathbb{N}, \exists y \in \mathbb{N}$ such that x + y = 5
 - (c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y = 5$
 - (d) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ such that } x + y = 5$
 - (e) $\exists x \in \mathbb{Z}$ such that $\forall y \in \mathbb{Z}, x + y = y$
- 9. For each of the following, rewrite the statement in English without \forall or \exists or variables, as simply as possible. Then write the negation.
 - (a) \exists a book *b* such that \forall people *p*, *p* has read *b*
 - (b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q} \text{ such that } x \cdot y = 1$

Epp, Exercise 3.3.14