Work on these with your partner(s) at the board

- 1. Prove that the third Ramsey number R(3) > 5 by two-coloring the edges of K_5 such that there is no blue K_3 or red K_3 that is a subgraph.
- 2. Prove that R(3) = 6 by showing that every two-coloring of the edges of K_6 has a K_3 subgraph that is red or blue.
- 3. Prove that R(4) > 6
- 4. The purpose of this problem is to show that R(4) > 17. Label the vertices of K_{17} by 0, 1, 2, ..., 16Color an edge connecting vertex *i* to vertex *j* red iff

 $(i-j) \mod 17 \equiv 1, 2, 4, 8, 9, 13, 15, \text{ or } 16$

Otherwise, color the edge blue.

(a) Prove that there is no K_4 subgraph with red edges that contains vertex 0.

- (b) Prove that there is no K_4 subgraph with blue edges that contains vertex 0.
- (c) Argue by symmetry that the same argument works for all other vertices.

Conclude that R(4) > 17.