Problem Set \#7

Due Thursday, April 4, 2024 @ 11:59 pm
Submit as single pdf file to Canvas

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Define a relation R on \mathbb{R} by $x R y$ iff $x y>0$.
(a) Give three ordered pairs in R.
(b) Give three ordered pairs of real numbers not in R.
(c) Prove that R is symmetric and transitive but not reflexive.
2. Let S be the relation defined on $\mathbb{R} \times \mathbb{R}$ by $(x, y) S(a, b)$ iff $x^{2}+y^{2}=a^{2}+b^{2}$.

Prove that S is an equivalence relation and describe the equivalence classes.
3. Let T be the relation defined on $\mathbb{R} \times \mathbb{R}$ by $(x, y) T(a, b)$ iff $3 x+2 y=3 a+2 b$.

Prove that T is an equivalence relation and describe the equivalence classes.
4. We can visualize a relation R on a set A by drawing a directed graph, or digraph, where the vertices are the elements of A and we draw an edge from vertex a to vertex b if $(a, b) \in R$.
For example, $A=\{a, b, c, d\}$ and $R=\{(a, a),(a, b),(b, a),(b, d),(c, a),(d, c)\}$ then the digraph is

Let $A=\{1,2,3,4,5,6\}$ and define

$$
R=\{(1,1),(1,6),(2,2),(2,3),(2,4),(3,3),(3,2),(3,4),(4,4),(4,2),(4,3),(5,5),(6,6),(6,1)\}
$$

(a) Draw the digraph for R.
(b) Determine whether R is an equivalence relation on A.
(c) In general, if S is an equivalence relation on a set B, describe the digraph for S. Pay special attention to the equivalence classes of S.

[^0]
[^0]: References for problems: 2,3. Schumacher, Chapter Zero, Exercise 4.3.19; 4. Ernst, Introduction to Proof via Inquiry-Based Learning, Exercise 7.36

