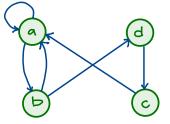
Problem Set #7

Due Thursday, April 4, 2024 @ 11:59 pm Submit as single pdf file to Canvas

Remember to review the Guidelines for Problem Sets on the course webpage.

- 1. Define a relation *R* on \mathbb{R} by *x R y* iff *xy* > 0.
 - (a) Give three ordered pairs in *R*.
 - (b) Give three ordered pairs of real numbers not in *R*.
 - (c) Prove that *R* is symmetric and transitive but not reflexive.
- 2. Let *S* be the relation defined on $\mathbb{R} \times \mathbb{R}$ by (x, y) S(a, b) iff $x^2 + y^2 = a^2 + b^2$. Prove that *S* is an equivalence relation and describe the equivalence classes.
- 3. Let *T* be the relation defined on $\mathbb{R} \times \mathbb{R}$ by (x, y) T(a, b) iff 3x + 2y = 3a + 2b. Prove that *T* is an equivalence relation and describe the equivalence classes.
- 4. We can visualize a relation R on a set A by drawing a *directed graph*, or *digraph*, where the vertices are the elements of A and we draw an edge from vertex a to vertex b if $(a, b) \in R$.

For example, $A = \{a, b, c, d\}$ and $R = \{(a, a), (a, b), (b, a), (b, d), (c, a), (d, c)\}$ then the digraph is



Let $A = \{1, 2, 3, 4, 5, 6\}$ and define

 $R = \{(1, 1), (1, 6), (2, 2), (2, 3), (2, 4), (3, 3), (3, 2), (3, 4), (4, 4), (4, 2), (4, 3), (5, 5), (6, 6), (6, 1)\}$

- (a) Draw the digraph for *R*.
- (b) Determine whether *R* is an equivalence relation on *A*.
- (c) In general, if *S* is an equivalence relation on a set *B*, describe the digraph for *S*. Pay special attention to the equivalence classes of *S*.

References for problems: 2,3. Schumacher, *Chapter Zero*, Exercise 4.3.19; 4. Ernst, *Introduction to Proof via Inquiry-Based Learning*, Exercise 7.36