Problem Set \#6

Due Thursday, March 28, 2024 @ 11:59 pm
Submit as single pdf file to Canvas

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Provide a proof for each statement that is true, and find a counter-example for each statement that is false. Assume that all sets are subsets of a universal set U.
(a) For all sets A and B, if $A \subseteq B$ then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
(b) For all sets A and $B, \mathcal{P}(A \cup B) \subseteq \mathcal{P}(A) \cup \mathcal{P}(B)$.
(c) For all sets A and $B, \mathcal{P}(A \times B) \subseteq \mathcal{P}(A) \times \mathcal{P}(B)$.
2. Prove or give a counterexample: For all sets A, B and C, if $A \cup C=B \cup C$ and $A \cap C=B \cap C$, then $A=B$.
3. Define $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by $f(x, y)=(x+7,2-3 y)$
(a) Is f one-one? Prove or give a counterexample.
(b) Is f onto? Prove or give a counterexample.
4. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions and $g \circ f$ is onto, must f be onto? Prove or give a counterexample.
