Problem Set \#5

Due Thursday, February 29, 2024 @ 11:59 pm
Submit as single pdf file to Canvas

Remember to review the Guidelines for Problem Sets on the course webpage.

1. Let $x \in \mathbb{R}$. Prove x is irrational iff $\frac{1}{x}$ is irrational.
2. Prove $3 \mid\left(n^{3}-7 n+3\right) \quad \forall$ integers $n \geq 0$.
3. Prove $\sqrt{n}<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}} \quad \forall n \in \mathbb{Z}, n \geq 2$.

Hint: At some point in your proof, it might be useful to remember that $\sqrt{k}<\sqrt{k+1} \quad \forall k \in \mathbb{N}$.
4. Consider the sequence defined by

$$
a_{0}=12, \quad a_{1}=29, \quad \text { and } \quad a_{k}=5 a_{k-1}-6 a_{k-2}, \quad \forall k \in \mathbb{Z}, k \geq 2
$$

(a) Compute the first six terms of the sequence (through a_{5}).
(b) Prove that $a_{n}=5 \cdot 3^{n}+7 \cdot 2^{n} \quad \forall n \in \mathbb{Z}, n \geq 0$.

