Work on these with your partner(s) at the board

1. Write each of the following in set-builder notation:
(a) The set of integers that are multiples of 3
(b) The set of rational numbers whose square is less than 2
2. Let $A=\{n \in \mathbb{Z} \mid n=2 k$ for some $k \in \mathbb{Z}\}$ and $B=\{m \in \mathbb{Z} \mid m=4 j$ for some $j \in \mathbb{Z}\}$.
Prove $B \subseteq A$. Is $B \subset A$?
3. Let $A=\{a, b, c\}$ and $B=\{a, c, d, e\}$ with universal set $U=\{a, b, c, d, e, f\}$. Find each of the following:
(a) $A \cup B$
(d) $B-A$
(g) $A^{c} \cup B^{C}$
(b) $A \cap B$
(e) A^{c}
(h) $(A \cap B)^{c}$
(c) $A-B$
(f) $A \times B$
(i) $P(A)$
4. Determine whether each of these statements is true or false.
(a) $x \in\{x\}$
(c) $\{x\} \in\{x\}$
(b) $\{x\} \subseteq\{x\}$
(d) $\emptyset \subseteq\{x\}$
5. Use an element argument to prove that $B-A=B \cap A^{c}$
6. Consider DeMorgan's law: $(A \cap B)^{c}=A^{c} \cup B^{C}$
(a) Sketch a Venn diagram to convince yourself that this statement is true.
(b) Use an element argument to prove it is true.
7. Formulate the other version of DeMorgan's law and repeat \#6 using it.
