Discuss these with your partner(s)

1. For $p=7$, compute $p^{2}-1$ and then divide by 24 . What do you get? Repeat for $p=13$ and $p=41$. Now pick a large prime $p>3$ and repeat. Do you think there's a general result?
2. Must there be at least two (non-bald) people in Boston with the same number of hairs on their heads?
3. Consider the sum $1+2+3+\cdots+n$

Compute this expression for $n=4,6,10,13,100$.
Look for a pattern for the sum that holds for every value of n.
4. You have a group of five people. Is it possible for each to be friends with exactly two others? What about with exactly three others?
In a group of nine people, is it possible for each to be friends with exactly five others?
5. What is the minimum number of guests you need at a party to guarantee that either two people know each other or two people don't know each other? What about the same condition for three people? four people? five people?

