Discus with your partner(s)

1. Consider the sum

$$\sum_{k=1}^{n} \frac{1}{k(k+1)} = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \dots + \frac{1}{n(n+1)}$$

- (a) Compute the sum for a few values of *n*
- (b) Form a conjecture for the value of the sum that depends only on n
- (c) Use induction to prove your conjecture
- 2. The triangular numbers are defined by: $t_1 = 1$, $t_n = t_{n-1} + n \quad \forall n \ge 2$
 - (a) Prove that $8t_n + 1 = (2n + 1)^2 \quad \forall n \ge 1$
 - (b) Compute $t_{n-1} + t_n$ for n = 1, 2, 3, 4

Make a conjecture for the value of this sum for all $n \ge 2$, and then prove your conjecture

Image source: https://commons.wikimedia.org/wiki/File:First_six_triangular_numbers.svg

- 3. Determine whether each statement is true or false. If it is true, then give a proof. If it is false, then provide a counterexample.
 - (a) $\forall n \in \mathbb{N}$, $n^2 + n + 41$ is prime
 - (b) $\forall n \in \mathbb{N}$, $6n^2 + 1$ is not a perfect square
 - (c) $\forall n \in \mathbb{N}$, $23n^2 + 1$ is not a perfect square
 - (d) $\forall n \in \mathbb{N}$, 991 $n^2 + 1$ is not a perfect square