Discus with your partner(s)

1. Consider the sum $\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\cdots+\frac{1}{n(n+1)}$
(a) Compute the sum for a few values of n
(b) Form a conjecture for the value of the sum that depends only on n
(c) Use induction to prove your conjecture
2. The triangular numbers are defined by: $t_{1}=1, \quad t_{n}=t_{n-1}+n \quad \forall n \geq 2$
(a) Prove that $8 t_{n}+1=(2 n+1)^{2} \quad \forall n \geq 1$
(b) Compute $t_{n-1}+t_{n}$ for $n=1,2,3,4$

Make a conjecture for the value of this sum for all $n \geq 2$, and then prove your conjecture

Image source: https://commons.wikimedia.org/wiki/File:First_six_triangular_numbers.svg
3. Determine whether each statement is true or false. If it is true, then give a proof. If it is false, then provide a counterexample.
(a) $\forall n \in \mathbb{N}, n^{2}+n+41$ is prime
(b) $\forall n \in \mathbb{N}, 6 n^{2}+1$ is not a perfect square
(c) $\forall n \in \mathbb{N}, 23 n^{2}+1$ is not a perfect square
(d) $\forall n \in \mathbb{N}, 991 n^{2}+1$ is not a perfect square

