Prove each of the following. Explicitly list the type of proof used.

1.
$$\forall n \in \mathbb{Z}, n^2 \geq n$$

- 2. Given any two consecutive integers, one is even and one is odd.
- 3. Given three consecutive integers, one is divisible by 3.

Sketch: The integers will be of form n, n + 1, n + 2. Apply quotient/remainder property to n with d = 3, then use cases on r

- 4. Given four consecutive integers, one is divisible by 4.
- 5. If p > 3 is prime, then $p^2 1$ is divisible by 24.

Hint:
$$p^2 - 1 = (p - 1)(p + 1)$$
, and apply previous two results

6. Prove that $\sqrt{2}$ is irrational.

Sketch:

- Suppose $\sqrt{2} \in \mathbb{Q}$, then $\sqrt{2} = \frac{a}{b}$ where $a, b \in \mathbb{Z}, \ b \neq 0$.
- Argue that you can assume a and b are not both even.
- Do some more stuff. (This is like a Bake-Off technical challenge)
- · Get a contradiction.
- Conclude $\sqrt{2}$ is irrational.