Discuss these with your partner(s)

1. Let $P(x)$ be the predicate " $x^{2} \geq x$ "
(a) What are the truth values of $P(2)$? $P\left(\frac{1}{2}\right)$?, $P(-1)$?
(b) If the domain is $D=\mathbb{Z}$, find the truth set of $P(x)$
(c) If the domain is $D=\mathbb{R}$, find the truth set of $P(x)$
2. Let $Q(x)$ be the predicate " $x^{4} \geq x$ ". Determine the truth value of each statement.
(a) $\forall x \in \mathbb{Z}, Q(x)$
(b) $\forall x \in \mathbb{R}, Q(x)$
(c) $\exists x \in \mathbb{R}$ such that $Q(x)$
3. Rewrite the following informally as English sentences without quantifiers or variables:
(a) $\forall x \in \mathbb{Z}$, if $x>0$, then $x^{2}>0$
(b) $\exists x \in \mathbb{R}$ such that $x^{2}=9$

From Rachelle DeCoste
4. Let \mathbb{R} be the domain of the predicate variable x. Which of the following are true and which are false? Give counter examples for those that are false.
(a) $x>2 \Rightarrow x^{2}>4$
(b) $x^{2}>4 \Rightarrow x>2$
(c) $x^{2}>4 \Leftrightarrow|x|>2$

Epp, Exercise 3.22
5. Determine the true value of each statement.
(a) $\exists a, b, c \in \mathbb{Z}$, all non-zero, such that $a^{2}+b^{2}=c^{2}$
(b) $\exists a, b, c \in \mathbb{Z}$, all non-zero, such that $a^{3}+b^{3}=c^{3}$

Discuss these with your partner(s)

6. Rewrite the following statements formally as a predicate with a quantifier. Be certain to define the domain. Then write formal and informal negations.
(a) There is a professor at Wheaton who went to graduate school at Northwestern.
(b) All customers must wear shoes.
7. Consider the statement: $\forall x \in \mathbb{R}$, if $x^{2}>9$ then $x>3$ or $x<-3$ Write the negation, the converse, the inverse, and the contrapositive. Indicate which are true and which are false.
8. Determine the truth of each of the following.
(a) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y=y+x$
(b) $\exists x \in \mathbb{N}, \exists y \in \mathbb{N}$ such that $x+y=5$
(c) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x+y=5$
(d) $\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z}$ such that $x+y=5$
(e) $\exists x \in \mathbb{Z}$ such that $\forall y \in \mathbb{Z}, x+y=y$

From Rachelle DeCoste
9. For each of the following, rewrite the statement in English without \forall or \exists or variables, as simply as possible. Then write the negation.
(a) \exists a book b such that \forall people p, p has read b
(b) $\forall x \in \mathbb{N}, \exists y \in \mathbb{Q}$ such that $x \cdot y=1$

Epp, Exercise 3.3.14

