Work on these with your partner(s) at the board

1. Prove that the third Ramsey number $R(3) \neq 5$ by two-coloring the edges of K_{5} such that there is no blue K_{3} or red K_{3} that is a subgraph.
2. Prove that $R(3)=6$ by showing that every two-coloring of the edges of K_{6} has a K_{3} subgraph that is red or blue.
3. The purpose of this problem is to show that $R(4)>17$.

Label the vertices of K_{17} by $0,1,2, \ldots, 16$
Color an edge connecting vertex i to vertex j red iff

$$
(i-j) \bmod 17 \equiv 1,2,4,8,9,13,15, \text { or } 16
$$

Otherwise, color the edge blue.
(a) Prove that there is no K_{4} subgraph with red edges that contains vertex 0 .
(b) Prove that there is no K_{4} subgraph with blue edges that contains vertex 0 .
(c) Argue by symmetry that the same argument works for all other vertices.

Conclude that $R(4)>17$.

