Work on these with your partner(s) at the board

1. Let $G=(V, E)$ be the graph where $V=\{a, b, c, d\}$ and $E=\{\{a, c\},\{a, d\},\{b, c\},\{b, d\},\{a\},\{c, d\}\}$
(a) Sketch G
(b) What is the degree of each vertex?
(c) What is the total degree of G ?
2. Sketch a graph with the specified properties or explain why no such graph exists.
(a) A graph with 4 vertices and 8 edges.
(b) A simple graph with 4 vertices and 3 edges.
(c) A non-simple graph with 4 vertices and 3 edges.
(d) A connected simple graph with 4 vertices and 3 edges.
(e) A simple graph with 4 vertices and 8 edges.
(f) K_{5}, the complete graph with 5 vertices
3. Let $V=\left\{v_{1}, v_{2}, \ldots, v_{10}\right\}$ and define an equivalence relation R on V by $v_{i} R v_{j}$ iff $i \equiv j \bmod 3$. Sketch the digraph corresponding to this equivalence relation. Problem Set \#7 may be a useful reference.
4. Let $S=\{1,2,3,4,5\}$. Consider defining a graph G using the following process:

- Vertices: Each vertex of G corresponds to a different two-element subset of S
- Edges: Two vertices are connected by an edge if their corresponding sets are disjoint
(a) How many vertices does G have? List them.
(b) Consider the vertex v_{12} corresponding to the set $\{1,2\}$. Which vertices are adjacent to v_{12} ?
(c) Sketch G

5. Find a walk on the graph below that contains every edge exactly once.

