Some Big Ideas, Week 9

Mar 25 - Mar 29, 2024
\odot Definition: Let A and B be sets. A relation R from A to B is a subset of $A \times B$.
If $(a, b) \in A \times B$, we say a is related to b by R, denoted $a R b$, iff $(a, b) \in R$.
A is the domain of R, and B is the codomain of R.
\odot Note: Any function $f: A \rightarrow B$ defines a relation R by $a R b$ iff $b=f(a)$.
\odot Definition: A relation on a set A is a relation from A to A.
\odot Definition: Let R be a relation on a set A.

- R is reflexive iff for all $a \in A$, aRa,
or equivalently, for all $a \in A,(a, a) \in R$.
- R is symmetric iff for all $a, b \in A$, if $a R b$ then $b R a$,
or equivalently, for all $a, b \in A$, if $(a, b) \in R$ then $(b, a) \in R$.
- R is transitive iff for all $a, b, c \in A$, if $a R b$ and $b R c$ then $a R c$,
or equivalently, for all $a, b, c \in A$, if $(a, b) \in R$ and $(b, c) \in R$ then $(a, c) \in R$.
\odot Definition: Let A be a set and R a relation on A. Then R is an equivalence relation iff R is reflexive, symmetric, and transitive.
\odot Definition: Let A be a set and R an equivalence relation on A. For each element $a \in A$, define the equivalence class of a, denoted $[a]$, to be the set of elements in A that are related to a :

$$
[a]=\{b \in A \mid a R b\}
$$

\odot Definition: A partition of a set A is collection of non-empty, mutually disjoint subsets of A such that every element of A is in exactly one of the subsets.
For example, if E denotes the even integers and O denotes the odd integers, then a partition of \mathbb{Z} is $\{E, O\}$.
\odot Theorem (8.3.4, Epp pg 469): If A is a set and R is a relation on A, then the distinct equivalence classes of R form a partition of A.

[^0]
[^0]: Some of the resources I used in constructing the Big Ideas notes this semester are: Ernst: Introduction to Proof via Inquiry-Based Learning; Epp: Discrete Mathematics with Applications, 4th edition; Levin: Discrete Mathematics, An Open Introduction, 3rd edition; Sundstrom: Mathematical Reasoning, Writing and Proof, Version 3; and the notes of my colleague, Rachelle DeCoste at Wheaton.

 Check the Tentative Weekly Syllabus on the course webpage for the specific sections relevant for this week.

