Some Big Ideas, Week 8 Mar 18 – Mar 22, 2024

- ⊙ Review the summary of *Function Definitions* given on page 50 of Levin, Discrete Mathematics, An Open Introduction, 3rd edition.
- A few notes about a function $f : X \to Y$:
 - The domain X of f is a set.
 - The codomain Y of f is a set.
 - The range of f is a *subset* of Y.
 - If $x \in X$, then f(x), the image of x, is a *single element* in Y.
 - If $A \subseteq X$, then f(A), the image of A, is a *subset* of Y.
 - If $y \in Y$, then $f^{-1}(y)$, the preimage or inverse image of y, is a *subset* of X.
 - If $B \subseteq Y$, then $f^{-1}(B)$, the preimage or inverse image of *B*, is a *subset* of *X*.
- \odot General structure to prove a function $f : X \to Y$ is one-one (or injective):
 - Suppose that $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$.
 - Show that $x_1 = x_2$.
- \odot General structure to prove a function $f : X \to Y$ is onto (or surjective):
 - · Let $y \in Y$ be an arbitrarily chosen element of *Y*.
 - Show that $\exists x \in X$ such that f(x) = y.
- **Definition**: If $f : X \to Y$ is one-one and onto, then define the *inverse function* $f^{-1} : Y \to X$ by $f^{-1}(y) = x$ iff f(x) = y.
- **Definition**: If $f : X \to Y$ and $g : Y' \to Z$ where the range of f is a subset of Y', then define the *composition* $g \circ f : X \to Z$ by $(g \circ f)(x) = g(f(x))$.
- **Definition**: Sets *A* and *B* have the same *cardinality* iff there exists a bijection $f : A \rightarrow B$. Note: Compare this to the definition of cardinality given on page 50 of Levin.

Check the *Tentative Weekly Syllabus* on the course webpage for the specific sections relevant for this week.

Some of the resources I used in constructing the Big Ideas notes this semester are: Ernst: Introduction to Proof via Inquiry-Based Learning; Epp: Discrete Mathematics with Applications, 4th edition; Levin: Discrete Mathematics, An Open Introduction, 3rd edition; Sundstrom: Mathematical Reasoning, Writing and Proof, Version 3; and the notes of my colleague, Rachelle DeCoste at Wheaton.