## Some Big Ideas, Week 11

Apr 8 - Apr 12, 2024

- The Pigeonhole Principle: If $A$ and $B$ are finite sets where $|A|>|B|$, then there is no one-one function from $A$ to $B$.
i.e. There must exist two elements of $A$ that map to the same value in $B$.
$\odot$ Generalize Pigeonhole Principle: If $A$ and $B$ are finite sets where $|A|=n$ and $|B|=m$, then for any positive integer $k<\frac{n}{m}$, there exists some $b \in B$ such that $b$ is the image of at least $k+1$ distinct elements of $A$.
$\odot$ Definition: A $k$-combination of a set $A$ is a subset of $A$ consisting of $k$ elements.
If $A$ has $n$ elements, then the number of $k$-combinations of $A$ is denoted by $\binom{n}{k}$.
$\odot$ Theorem: For all non-negative integers with $k \leq n$,

$$
\binom{n}{k}=\frac{P(n, k)}{k!}=\frac{n!}{k!(n-k)!}
$$

$\odot$ Pascal's Theorem: For all positive integers with $k \leq n$,

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

$\odot$ The Binomial Theorem: For all $a, b \in \mathbb{R}$ and any non-negative integer $n$,

$$
\begin{aligned}
(a+b)^{n} & =\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
& =a^{n}+\binom{n}{1} a^{n-1} b^{1}+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{n-1} a^{1} b^{n-1}+b^{n}
\end{aligned}
$$

[^0]Check the Tentative Weekly Syllabus on the course webpage for the specific sections relevant for this week.


[^0]:    Some of the resources I used in constructing the Big Ideas notes this semester are: Ernst: Introduction to Proof via Inquiry-Based Learning; Epp: Discrete Mathematics with Applications, 4th edition; Levin: Discrete Mathematics, An Open Introduction, 3rd edition; Sundstrom: Mathematical Reasoning, Writing and Proof, Version 3; and the notes of my colleague, Rachelle DeCoste at Wheaton.

