Talk with the people around you for a minute

At the point marked, f_{x} will be
(a) Positive
(b) Negative
(c) 0
(d) Undefined
(e) Urrr

Coloring is [blue, red]

Talk with the people around you for a minute

At the point marked, f_{y} will be
(a) Positive
(b) Negative
(c) 0
(d) Undefined
(e) Urrr

Coloring is [blue, red]

Talk with the people around you for a minute

At the point marked, f_{x} will be
(a) Positive
(b) Negative
(c) 0
(d) Undefined
(e) Urrr

Coloring is [blue, red]

Talk with the people around you for a minute

At the point marked, f_{y} will be
(a) Positive
(b) Negative
(c) 0
(d) Undefined
(e) Urrr

Coloring is [blue, red]
$f(x, y)=x^{2}+2 x^{2} y+y^{2}+3$

1. Let $f(x, y)=\cos (x+y)+\sin (y)$

1. Find the first order partial derivatives f_{x}, f_{y}
2. Find the second order partial derivatives $f_{x x}, f_{x y}, f_{y x}$, and $f_{y y}$
3. Evaluate $f_{x}, f_{y}, f_{x x}$ and $f_{y y}$ the point $(0,0.5)$.
4. What does your answer to 3 tell you about the graph $z=f(x, y)$ at $(0,0.5)$?
5. Use a contour plot and/or 3D plot to verify your answers to \#3 and \#4.

2. Let $g(x, y)=x^{2}+2 x y+2 y-1$

1. Find the first order partial derivatives g_{x}, g_{y}
2. Find the second order partial derivatives $g_{x x}, g_{x y}, g_{y x}$, and $g_{y y}$
3. Evaluate $g_{x}, g_{y}, g_{x x}$ and $g_{y y}$ the point $(2,-4)$.
4. What does your answer to 3 tell you about the graph $z=g(x, y)$ at $(2,-4)$?
5. Use a contour plot and/or 3D plot to verify your answers to \#3 and \#4.
