At the point marked, f_x will be

- (a) Positive
- (b) Negative
- (c) 0
- (d) Undefined
- (e) Urrr

At the point marked, f_y will be

- (a) Positive
- (b) Negative
- (c) 0
- (d) Undefined
- (e) Urrr

At the point marked, f_x will be

- (a) Positive
- (b) Negative
- (c) 0
- (d) Undefined
- (e) Urrr

At the point marked, f_y will be

- (a) Positive
- (b) Negative
- (c) 0
- (d) Undefined
- (e) Urrr

$$f(x, y) = x^2 + 2x^2y + y^2 + 3$$

- 1. Find the first order partial derivatives f_x , f_y
- 2. Find the second order partial derivatives f_{XX} , f_{XY} , f_{YX} , and f_{YY}
- 3. Evaluate f_x , f_y , f_{xx} and f_{yy} the point (0, 0.5).
- 4. What does your answer to 3 tell you about the graph z = f(x, y) at (0, 0.5)?
- 5. Use a contour plot and/or 3D plot to verify your answers to #3 and #4.

- 1. Find the first order partial derivatives g_x , g_y
- 2. Find the second order partial derivatives g_{xx} , g_{xy} , g_{yx} , and g_{yy}
- 3. Evaluate g_x , g_y , g_{xx} and g_{yy} the point (2, -4).
- 4. What does your answer to 3 tell you about the graph z = g(x, y) at (2, -4)?
- 5. Use a contour plot and/or 3D plot to verify your answers to #3 and #4.