1. (a) Use the Maclaurin series for e^{x} to create the Maclaurin series for $e^{-x^{3}}$
(b) Use your answer from (a) to create a Maclaurin series for $x e^{-x^{3}}$
(c) Use your answer from (b) to approximate $\int_{0}^{1} x e^{-x^{3}} d x$ accurate within 0.05
2. (a) What is the Maclaurin series for $f(x)=\frac{1}{1-x}$ where $|x|<1$? Hint: Think about geometric series
(b) Use that $\frac{1}{1+x^{2}}=\frac{1}{1-\left(-x^{2}\right)}$ to find the Maclaurin series for $f(x)=\frac{1}{1+x^{2}}$
(c) Use your answer from (b) to find the Maclaurin series for $\arctan (x)$
(d) Approximate $\arctan (1)$ by using your series from (c) and computing S_{100} You can use Desmos or WolframAlpha to compute S_{100}
