1. Consider the power series $P(x)=\sum_{k=1}^{\infty} \frac{x^{k}}{k 2^{k}}=\frac{x}{2}+\frac{x^{2}}{2 \cdot 2^{2}}+\frac{x^{3}}{3 \cdot 2^{3}}+\cdots$
(a) Does $P(x)$ converge or diverge at $x=1$?
(b) Does $P(x)$ converge or diverge at $x=-1$?
(c) Does $P(x)$ converge or diverge at $x=2$?
(d) Does $P(x)$ converge or diverge at $x=-2$?
2. Consider the power series $P(x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
(a) Plot the following partial sums of $P(x): S_{0}(x), S_{2}(x), S_{4}(x)$ and $S_{6}(x)$
(b) What well-known function do you think $P(x)$ is equal to?
(c) Evaluate $P(0), P^{\prime}(0), P^{\prime \prime}(0), P^{\prime \prime \prime}(0), P^{(4)}(0)$
