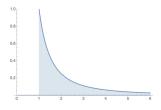
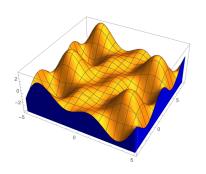

What is Calc II all about? Part 1: Applications of the Integral

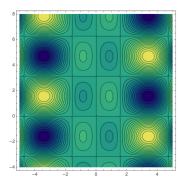
Anything you can approximate by accumulation, you can calculate by an integral



What is Calc II all about? Part 2: Infinite series

"Infinite" integrals and sums are really powerful tools!




$$\sum_{k=0}^{\infty} \frac{1}{2^k} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

What is Calc II all about? Part 3: Functions of two variables

We live in a multivariable world

Find the derivative of each function

1. Find the derivative of each function

(a)
$$f(x) = x^3 + 7x + 1$$

(b)
$$f(x) = \sin(x^2)$$

(c)
$$f(x) = \sqrt{x + e^x}$$

(d)
$$f(x) = (3x^2 + 7x) \ln(x)$$

2. Evaluate the following integrals

(a)
$$\int 5x^4 - x^3 + \pi \ dx$$

(b)
$$\int_{0}^{\pi/2} -\sin(2x) \ dx$$

(c)
$$\int e^x + \frac{1}{x} dx$$

(d)
$$\int \sec(2x)^2 dx$$