
Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Since f(x) is differentiable, locally it is locally linear

Thus, it makes sense to approximate the arc length by straight lines
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Subdivide [a,b] into n subintervals of width ∆x with a = x0 < x1 < . . . < xn = b
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

What is the length of the segment that joins (xi, f(xi)) and (xi+1, f(xi+1))?
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Length of segment =
√
(xi+1 − xi)2 + (f(xi+1)− f(xi))2
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Length of segment =
√
(xi+1 − xi)2 + (f(xi+1)− f(xi))2

=

√(
(xi+1 − xi)2 + (f(xi+1)− f(xi))2

)
(xi+1 − xi)2
(xi+1 − xi)2
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Length of segment =
√(

(xi+1 − xi)2 + (f(xi+1)− f(xi))2
)

(xi+1 − xi)2
(xi+1 − xi)2

=

√
1+

(
f(xi+1)− f(xi)
xi+1 − xi

)2
(xi+1 − xi)
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Mean Value Theorem

If f is differentiable on [a,b], then there is at least one c ∈ (a,b) such that

f ′(c) = f(b)− f(a)
b− a

i.e. If your avg velocity on a trip is 60 mph, at some point you were going exactly 60 mph.

Applying the MVT to the interval [xi, xi+1], there is a ci ∈ [xi, xi+1] such that

f ′(ci) =
f(xi+1)− f(xi)
xi+1 − xi
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Length of segment =

√
1+

(
f(xi+1)− f(xi)
xi+1 − xi

)2
(xi+1 − xi)

=
√
1+ (f ′(ci))2 ∆x

⇒ Arc Length ≈
n∑
i=1

√
1+ (f ′(ci))2 ∆x
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Why AL =
∫ b

a

√
1+ (f ′(x))2 dx

Arc Length ≈
n∑
i=1

√
1+ (f ′(ci))2 ∆x

⇒ Arc Length = lim
n→∞

n∑
i=1

√
1+ (f ′(ci))2 ∆x

=

∫ b

a

√
1+ (f ′(x))2 dx
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Why SA =

∫ b

a
2π f(x)

√
1+ (f ′(x))2 dx

Play same game, approximate y = f(x) with straight line segments.

Use the formula for the surface area of the frustum of a cone:

→ "" """ "

-

(xitisfcxitc))

"""
"

"⇒Fifi.si#i--iT(fcxi+DtfCxiS)FffciS)
DX
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Why SA =

∫ b

a
2π f(x)

√
1+ (f ′(x))2 dx

Thus,

SA ≈
n∑
i=1

π(f(xi+1 + f(xi))
√
1+ (f ′(ci))2 ∆x

⇒ SA =

∫ b

a
2π f(x)

√
1+ (f ′(x))2 dx
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Let C be the graph of y = sin(2x) + 2 for 0 ≤ x ≤ π

1. Set up the integral that give the arc length of C and use Simpson’s rule with 50
subdivisions to approximate the arc length. How accurate is your approximation?

2. Set up the integral that give the surface area of the solid formed when C is rotated
about the x-axis. Approximate the surface area accurate within 0.001 of its exact
value using Simpsons rule
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