- Sketch the region R that is being rotated and the line R is rotated about
- · Sketch the solid after R is rotated
- Write integral as Volume = $\int_a^b A(x) dx$.

To find A(x):

- Draw a vertical cross-section at an arbitrary x-value
- Use this to write an expression for A(x)
- Use whatever you need in your toolbox to evaluate $\int_a^b A(x) dx$

1. Sketch each solid described, and set up the integral that gives its volume

- (a) The solid formed when the region bounded by y = 4 2x, the x-axis and the y-axis is rotated about the x-axis
- (b) The solid formed when the region bounded by $y = \sqrt{x \sin(x)}$, the x-axis and the line x = 3 is rotated about the x-axis
- (c) The solid formed when the region bounded by $y = x^2 + 1$ and y = x + 3 is rotated about the x-axis
- (d) The volume when the region from (c) is rotated about the line y = 8

2. Find the volume of each solid by computing the integrals you set up in #1