Talk with the people around you for a minute

L_{10} will underestimate $\int_{0}^{2} f(x) d x$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) Ummmm...

Talk with the people around you for a minute

$$
R_{10} \text { will overestimate } \int_{3}^{4} f(x) d x
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Ummmm} \ldots$

Talk with the people around you for a minute

$$
T_{10} \text { will overestimate } \int_{1}^{3} f(x) d x
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Ummmm} \ldots$

Example: Let $\mathcal{I}=\int_{0}^{4} \sin \left(x^{2}\right)+3 d x$

1. Calculate T_{15} and S_{15} to approximate \mathcal{I}

Useful WolframAlpha syntax:
trapezoidal rule of $\sin \left(x^{\wedge} 2\right)+3$ from $x=0$ to $x=4$ with 15 subdivisions

Talk with the people around you for a minute

Using Theorem 5.5.1, $M_{2}=20$ is a valid value for $\int_{4}^{5} f(x) d x$

$$
\text { Plot of } y=f^{\prime \prime}(x)
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Ummmm} \ldots$

Talk with the people around you for a minute

Using Theorem 5.5.1, $M_{2}=20$ is a valid value for $\int_{1}^{5} f(x) d x$

$$
\text { Plot of } y=f^{\prime \prime}(x)
$$

(a) True, and I can explain why
(b) True, but I am unsure why
(c) False, and I can explain why
(d) False, but I am unsure why
(e) $\mathrm{Ummmm} \ldots$

Example: Let $\mathcal{I}=\int_{0}^{4} \sin \left(x^{2}\right)+3 d x$

1. Calculate T_{15} and S_{15} to approximate \mathcal{I}

Useful WolframAlpha syntax:
trapezoidal rule of $\sin \left(x^{\wedge} 2\right)+3$ from $x=0$ to $x=4$ with 15 subdivisions
2. What is the error from using the trapezoidal rule?

Useful Desmos syntax:

$$
\left|d / d x d / d x \sin \left(x^{\wedge} 2\right)+3\right|\{0<=x<=4\}
$$

3. What is the error from using Simpson's rule?

Let $\mathcal{I}=\int_{5}^{10} \cos \left(\frac{x^{2}}{3}\right)+x d x$

1. Calculate T_{30} and use Theorem 5.5.1 to determine the size of the error $\left|\mathcal{I}-T_{30}\right|$
2. Calculate S_{30} and use Theorem 5.5.1 to determine the size of the error $\left|\mathcal{I}-S_{30}\right|$
