If we substitute in
$$\int 5x \ln(x) dx$$
 with $u = 5x$ and $dv = \ln(x) dx$ then

(a)
$$du = \frac{5x^2}{2}$$
 and $v = \frac{1}{x}$

(b)
$$du = \frac{5x^2}{2} dx$$
 and $v = \frac{1}{x}$

(c)
$$du = 5 dx$$
 and $v = \frac{1}{x} dx$

(d)
$$du = 5x^2 dx$$
 and $v = \frac{1}{x}$

(e) None of the above

If we substitute in
$$\int 5x \ln(x) dx$$
 with $u = \ln(x)$ and $dv = 5x dx$ then

(a)
$$du = \frac{1}{x}$$
 and $v = 5$

(b)
$$du = \frac{1}{x} dx$$
 and $v = 5dx$

(c)
$$du = \frac{1}{x} dx$$
 and $v = \frac{5x^2}{2}$

(d)
$$du = \ln(x) dx$$
 and $v = \frac{5x^2}{2}$

(e) None of the above

Evaluate the following using integration by parts

1.
$$\int xe^{3x} dx$$

2.
$$\int x^2 e^x dx$$

Hint: Think parts twice

$$3. \int x^3 e^{x^2} dx$$

Hint: $u = x^2$ and $dv = xe^{x^2}dx$

4.
$$\int \ln(x) \ dx$$

$$5. \int \ln(x)^2 dx$$

$$6. \int e^{\sqrt{x}} dx$$

Hint: First substitute $u = \sqrt{x}$

7.
$$\int \arctan(x) dx$$