Talk with the people around you for a minute

If we substitute in $\int 5 x \ln (x) d x$ with $u=5 x$ and $d v=\ln (x) d x \quad$ then
(a) $d u=\frac{5 x^{2}}{2} \quad$ and $\quad v=\frac{1}{x}$
(b) $d u=\frac{5 x^{2}}{2} d x \quad$ and $\quad v=\frac{1}{x}$
(c) $d u=5 d x$ and $\quad v=\frac{1}{x} d x$
(d) $d u=5 x^{2} d x$ and $\quad v=\frac{1}{x}$
(e) None of the above

Talk with the people around you for a minute

If we substitute in $\int 5 x \ln (x) d x$ with $u=\ln (x)$ and $d v=5 x d x \quad$ then
(a) $d u=\frac{1}{x}$ and $\quad v=5$
(b) $d u=\frac{1}{x} d x$ and $\quad v=5 d x$
(c) $d u=\frac{1}{x} d x \quad$ and $\quad v=\frac{5 x^{2}}{2}$
(d) $d u=\ln (x) d x \quad$ and $\quad v=\frac{5 x^{2}}{2}$
(e) None of the above

Evaluate the following using integration by parts

1. $\int x e^{3 x} d x$
2. $\int \ln (x) d x$
3. $\int x^{2} e^{x} d x$
4. $\int \ln (x)^{2} d x$

Hint: Think parts twice
6. $\int e^{\sqrt{x}} d x$
3. $\int x^{3} e^{x^{2}} d x$ Hint: First substitute $u=\sqrt{x}$
Hint: $u=x^{2}$ and $d v=x e^{x^{2}} d x$

$$
\text { 7. } \int \arctan (x) d x
$$

