Recall: We use Riemann Sums to define an integral $\int_{a}^{b} f(x) d x$

$$
\int_{a}^{b} f(x) d x
$$

$$
\begin{aligned}
\text { Area } & \approx f\left(c_{1}\right) \Delta x+f\left(c_{2}\right) \Delta x+\cdots+f\left(c_{n}\right) \Delta x \\
& =\sum_{k=1}^{n} f\left(c_{k}\right) \Delta x
\end{aligned}
$$

Gif more accurate by taking wore subdiusens! l.\&.

$$
\text { Area }=\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(c_{k}\right) \Delta x
$$

We (usually) use the Fundamental Theorem of Calculus to evaluate an integral

Let f be continuous on $[a, b]$ and let F be any antiderivative of f. Then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

If cannot find an elementary antiderivative $F(x)$, then can use

- numeric techniques, like Simpson's Rule, or
- possibly a Taylor series for $f(x)$

Similarly: We use Riemann Sums to define an integral $\iint_{R} f(x, y) d A$

$\iint_{R} f(x, y) d A$ represents the signed volume between $z=f(x, y)$ and the $x y$-plane over the region R

(b)

Figure 13.2.1: Developing a method for finding signed volume under a surface.

$$
\Rightarrow \iint_{R} f(x, y) d A=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(u_{k}, v_{k}\right) \Delta A_{k}
$$

Can use earlier intuition about finding volumes via cross-sections

Figure 13.2.2: Finding volume under a surface by sweeping out a cross-sectional area.

$$
\begin{aligned}
\iint_{R} f(x, y) d A=\text { Volume } & =\int_{a}^{b} A(x) d x \\
& =\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
\end{aligned}
$$

Talk with the people around you for a minute

If $\iint_{R} f(x, y) d A=\int_{1}^{5} \int_{-1}^{1} f(x, y) d x d y$ then R is
(a) a square
(b) a rectangle
(c) a triangle
(d) a circle
(e) something else

Talk with the people around you for a minute

If $\iint_{R} f(x, y) d A=\int_{0}^{3} \int_{-x+5}^{5} f(x, y) d y d x$ then R is
(a) a square
(b) a rectangle
(c) a triangle
(d) a circle
(e) something else

Talk with the people around you for a minute

If $\iint_{R} f(x, y) d A=\int_{-3}^{2} \int_{y^{2}}^{-y+6} f(x, y) d x d y$ then R is
(a) a square
(b) a rectangle
(c) a triangle
(d) a circle
(e) something else

1. Find the volume below the surface $z=1+x+y$ and above the region R in the $x y$-plane bounded by the graphs $x=1, y=0, y=x^{2}$.
2. Find the volume below the surface $z=\cos \left(x^{2}\right)$ and above the triangle R in the $x y$-plane bounded by the x-axis, the line $x=1$, and the line $y=x$.
3. Evaluate $\iint_{R} 2 x-y d A$ where R is the region in the $x y$-plane bounded by the x-axis and the upper half of the circle centered at the origin with radius 2 .
4. Sketch the region determined by the bounds and reverse the order of integration
(a) $\int_{0}^{1} \int_{y}^{\sqrt[3]{y}} f(x, y) d x d y$
(b) $\int_{-\sqrt{2}}^{0} \int_{0}^{-x^{2}+2} f(x, y) d y d x+\int_{0}^{4} \int_{0}^{-\frac{1}{2} x+2} f(x, y) d y d x$
(You can combine this to one integra!!)
(c) $\int_{0}^{3} \int_{x-3}^{-x+3} f(x, y) d y d x$
