1. Use the Desmos to plot each of the following parametric curves. Observe how the curve is traced out.

What is the period of each curve? i.e. When does $r(t)$ start "repeating"?
(a) $r(t)=\langle\cos (t),-\sin (t)\rangle$
(b) $r(t)=\langle\cos (t), \sin (2 t)\rangle$
(c) $r(t)=\langle\cos (t) \sin (2 t), \sin (t) \sin (2 t)\rangle$
(d) $r(t)=\langle\cos (t) \sin (3 t), \sin (t) \sin (t)\rangle$
(e) $r(t)=\langle\cos (t) \sin (3 t), \sin (t) \sin (3 t)\rangle$
(f) Try other integer values for k in $r(t)=\langle\cos (t) \sin (k t), \sin (t) \sin (k t)\rangle$
2. Let $r(t)=\langle\cos (t), \sin (2 t)\rangle$
(a) Sketch the graph of $r(t)$ (Note this is the same function from 1 (b)
(b) Find $r^{\prime}(t)$
(c) On your sketch, label the point $r(0)$ and sketch the vector $r^{\prime}(0)$ Use $r(0)$ as the base point for $r^{\prime}(0)$
(d) Repeat (c) using $r(t)$ and $r^{\prime}(t)$ for $t=\frac{\pi}{6}, \frac{\pi}{4}, \frac{3 \pi}{2}, \frac{5 \pi}{2}$
(e) Use the Desmos file linked from the course webpage to verify your work
3. Use the Desmos file to explore the parametric curve

$$
r(t)=\left\langle\cos (2 t), \sin (t), \sin (t)^{2}-\cos (3 t)\right\rangle
$$

