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The Invertible Matrix Theorem (Theorem 2.8)
Let A be a square n × n matrix. Then the following statements are equivalent. That is, for a given A, the
statements are either all true or all false.

a. A is an invertible matrix.

b. A is row equivalent to the n× n identity matrix.

c. A has n pivot positions.

d. The equation Ax⃗ = 0⃗ has only the trivial solution.

e. The columns of A form a linearly independent set.

f. The linear transformation x⃗ → Ax⃗ is one-to-one.

g. The equation Ax⃗ = b⃗. has at least one solution for each b⃗ in Rn.

h. The columns of A span Rn.

i. The linear transformation x⃗ → Ax⃗ maps Rn onto Rn.

j. There is an n× n matrix C such that CA = I.

k. There is an n× n matrix D such that AD = I.

l. AT is an invertible matrix.

Recall Theorems 1.4 and 1.12:

Theorem 1.4
Let A be an m× n matrix. The following are equivalent:

a. For all b⃗ ∈ Rm, Ax⃗ = b⃗ has a solution.

b. Each b⃗ ∈ Rm is a linear combination of the columns of A.

c. The columns of A span Rm

d. A has a pivot in every row.

Theorem 1.12
Let T : Rn → Rm be a linear transformation and A the standard matrix for T .

a. T maps Rn onto Rm iff the columns of A span Rm

b. T is one-one iff the columns of A are linearly independent
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Sketch of proof of the Invertible Matrix Theorem
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⇒ CA ⃗x = C ⃗0
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Let ⃗x = D ⃗b

Check (A−1)T = (AT)−1

[A | I] → [I | B]
gives B = A−1

T. Ratliff Fall 2024


