Talk with the people around you for a minute

The matrix for the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects across the line y = x is given by

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Talk with the people around you for a minute

The matrix for the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates about the origin by $\frac{\pi}{2}$ radians clockwise is given by

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

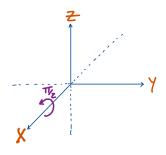
- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Talk with the people around you for a minute

The matrix for the transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ that rotates about the x-axis by $\frac{\pi}{2}$ radians counterclockwise is given by

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .



For each transformation T, find the corresponding matrix A

- 1. $T: \mathbb{R}^2 \to \mathbb{R}^2$ stretches horizontally away from the *y*-axis by a factor of 2
- 2. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates by $\frac{\pi}{3}$ counter-clockwise and then reflects across the *x*-axis
- 3. $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotates by $\frac{\pi}{4}$ clockwise and then stretches horizontally away from the y-axis by a factor of 3
- 4. $T: \mathbb{R}^3 \to \mathbb{R}^3$ projects onto the yz-plane

Note you can use the *Mathematica* notebook sep10.nb from Tuesday to verify your answers for 1, 2, and 3.