Talk with the people around you for a minute

$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & -3 & 4 \\ -1 & 3 & 2 \end{bmatrix} \qquad \text{REF}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The columns of A are linearly independent

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm, I think I need more information

Talk with the people around you for a minute

The vectors
$$\vec{\mathbf{v_1}} = \begin{bmatrix} 2\\0\\3 \end{bmatrix}$$
, $\vec{\mathbf{v_2}} = \begin{bmatrix} 0\\-1\\6 \end{bmatrix}$, $\vec{\mathbf{v_3}} = \begin{bmatrix} -2\\-4\\21 \end{bmatrix}$ lie in the same plane in \mathbb{R}^3

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm, I think I need more information

If A is a 4×5 matrix the columns of A are linearly independent

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm, I think I need more information

If A is a 5×4 matrix the columns of A are linearly independent

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Hmm, I think I need more information

Let
$$\vec{\mathbf{e_1}} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
, $\vec{\mathbf{e_2}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, and $\vec{\mathbf{u}} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

For each matrix A,

- (a) Find $T(\vec{e_1})$, $T(\vec{e_2})$, and $T(\vec{u})$
- (b) Plot these vectors in \mathbb{R}^2
- (c) Give a geometric description of T.

1.
$$A = \begin{bmatrix} 0 & -1 \\ & \\ 1 & 0 \end{bmatrix}$$
 2. $A = \begin{bmatrix} 1 & -1 \\ & \\ 0 & 1 \end{bmatrix}$ **3**. $A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$