1. Let
$$\vec{\bf u} = \langle 1, 2, -1 \rangle$$
, $\vec{\bf v} = \langle -3, 1, 5 \rangle$

- (a) Does $\vec{\boldsymbol{w}} = \langle 7, 0, 2 \rangle$ lie in Span $\{\vec{\boldsymbol{u}}, \vec{\boldsymbol{v}}\}$?
- (b) What does this tell you about the lines

$$x - 3y = 7$$
, $2x + y = 0$, and $-x + 5y = 2$?

From Lay, Section 1.4

THEOREM 4

Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.

- a. For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- b. Each **b** in \mathbb{R}^m is a linear combination of the columns of A.
- c. The columns of A span \mathbb{R}^m .
- d. A has a pivot position in every row.

Answer True / False

- 2. The columns of A span \mathbb{R}^4
- 3. The vectors $\{\vec{v_1}, \vec{v_2}, \vec{v_3}, \vec{v_4}\}$ span \mathbb{R}^4
- 4. Let $B = [\vec{\mathbf{v_1}} \ \vec{\mathbf{v_2}} \ \vec{\mathbf{v_3}} \ \vec{\mathbf{v_4}}]$ and $\vec{\mathbf{b}} = \langle 72, -128, \pi, e^{-411} \rangle$ The matrix equation $B\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has a unique solution
- 5. There exists $\vec{\mathbf{b}} \in \mathbb{R}^4$ such that $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ has infinitely many solutions.