THEOREM 9

If a vector space V has a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$, then any set in V containing more than *n* vectors must be linearly dependent.

Proof: Let $\{\vec{v_1}, \dots, \vec{v_p}\}$ be a set in *V* where p > n. Then $\{\vec{v_1}, \dots, \vec{v_p}\}$ is linearly dependent if there exists a nontrivial solution to $x_1\vec{v_1} + x_2\vec{v_2} + \dots + x_p\vec{v_p} = \vec{0}$

<u>Overview:</u>

- We will convert this into a matrix equation $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$.
- Since *p* > *n*, *A* has a free variable, and there exists a non-trivial solution to the homogeneous system.
- Thus, $\{\vec{v_1}, \dots, \vec{v_p}\}$ is a linearly dependent set.
- Note this applies to *any* vector space V, not just \mathbb{R}^n

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{\mathbf{b}_1} + a_{12}\vec{\mathbf{b}_2} + \dots + a_{1n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_1}$$

$$a_{21}\vec{\mathbf{b}_1} + a_{22}\vec{\mathbf{b}_2} + \dots + a_{2n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_2}$$

$$\vdots$$

$$a_{p1}\vec{\mathbf{b}_1} + a_{p2}\vec{\mathbf{b}_2} + \dots + a_{pn}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_p}$$

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{\mathbf{b}_1} + a_{12}\vec{\mathbf{b}_2} + \dots + a_{1n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_1}$$

$$a_{21}\vec{\mathbf{b}_1} + a_{22}\vec{\mathbf{b}_2} + \dots + a_{2n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_2}$$

$$\vdots$$

$$a_{p1}\vec{\mathbf{b}_1} + a_{p2}\vec{\mathbf{b}_2} + \dots + a_{pn}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_p}$$

Remember we are looking for a non-trivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

Since \mathcal{B} is a basis for V, we can write

$$a_{11}\vec{\mathbf{b}_1} + a_{12}\vec{\mathbf{b}_2} + \dots + a_{1n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_1}$$

$$a_{21}\vec{\mathbf{b}_1} + a_{22}\vec{\mathbf{b}_2} + \dots + a_{2n}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_2}$$

$$\vdots$$

$$a_{p1}\vec{\mathbf{b}_1} + a_{p2}\vec{\mathbf{b}_2} + \dots + a_{pn}\vec{\mathbf{b}_n} = \vec{\mathbf{v}_p}$$

Remember we are looking for a non-trivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

which becomes

$$x_{1}(a_{11}\vec{\mathbf{b_{1}}} + a_{12}\vec{\mathbf{b_{2}}} + \dots + a_{1n}\vec{\mathbf{b_{n}}}) + x_{2}(a_{21}\vec{\mathbf{b_{1}}} + a_{22}\vec{\mathbf{b_{2}}} + \dots + a_{2n}\vec{\mathbf{b_{n}}}) + \dots + x_{p}(a_{p1}\vec{\mathbf{b_{1}}} + a_{p2}\vec{\mathbf{b_{2}}} + \dots + a_{pn}\vec{\mathbf{b_{n}}}) = \vec{\mathbf{0}}$$

We can rearrange

$$x_{1}(a_{11}\vec{\mathbf{b_{1}}} + a_{12}\vec{\mathbf{b_{2}}} + \dots + a_{1n}\vec{\mathbf{b_{n}}}) + x_{2}(a_{21}\vec{\mathbf{b_{1}}} + a_{22}\vec{\mathbf{b_{2}}} + \dots + a_{2n}\vec{\mathbf{b_{n}}}) + \dots + x_{p}(a_{p1}\vec{\mathbf{b_{1}}} + a_{p2}\vec{\mathbf{b_{2}}} + \dots + a_{pn}\vec{\mathbf{b_{n}}}) = \vec{\mathbf{0}}$$

to

$$(x_1a_{11} + x_2a_{21} + \dots + x_pa_{p1})\vec{\mathbf{b}_1} + (x_1a_{12} + x_2a_{22} + \dots + x_pa_{p2})\vec{\mathbf{b}_2} + \dots + (x_1a_{1n} + x_2a_{2n} + \dots + x_pa_{pn})\vec{\mathbf{b}_n} = \vec{\mathbf{0}}$$

We can rearrange

$$x_{1}(a_{11}\vec{\mathbf{b_{1}}} + a_{12}\vec{\mathbf{b_{2}}} + \dots + a_{1n}\vec{\mathbf{b_{n}}}) + x_{2}(a_{21}\vec{\mathbf{b_{1}}} + a_{22}\vec{\mathbf{b_{2}}} + \dots + a_{2n}\vec{\mathbf{b_{n}}}) + \dots + x_{p}(a_{p1}\vec{\mathbf{b_{1}}} + a_{p2}\vec{\mathbf{b_{2}}} + \dots + a_{pn}\vec{\mathbf{b_{n}}}) = \vec{\mathbf{0}}$$

to

$$(x_1a_{11} + x_2a_{21} + \dots + x_pa_{p1})\vec{\mathbf{b}_1} + (x_1a_{12} + x_2a_{22} + \dots + x_pa_{p2})\vec{\mathbf{b}_2} + \dots + (x_1a_{1n} + x_2a_{2n} + \dots + x_pa_{pn})\vec{\mathbf{b}_n} = \vec{\mathbf{0}}$$

Remember $\left\{\vec{b_1},\ldots,\vec{b_n}\right\}$ is a linearly independent set.

Since $\left\{\vec{b_1},\ldots,\vec{b_n}\right\}$ is a linearly independent, we get

$$x_{1}a_{11} + x_{2}a_{21} + \dots + x_{p}a_{p1} = 0$$

$$x_{1}a_{12} + x_{2}a_{22} + \dots + x_{p}a_{p2} = 0$$

$$\vdots$$

$$x_{1}a_{1n} + x_{2}a_{2n} + \dots + x_{p}a_{pn} = 0$$

Since $\left\{\vec{b_1},\ldots,\vec{b_n}\right\}$ is a linearly independent, we get

$$x_{1}a_{11} + x_{2}a_{21} + \dots + x_{p}a_{p1} = 0$$

$$x_{1}a_{12} + x_{2}a_{22} + \dots + x_{p}a_{p2} = 0$$

$$\vdots$$

$$x_{1}a_{1n} + x_{2}a_{2n} + \dots + x_{p}a_{pn} = 0$$

This converts to the matrix equation

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x} = \vec{0}$ has a non-trivial solution.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x} = \vec{0}$ has a non-trivial solution.

This gives us a non-trivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{p1} \\ a_{12} & a_{22} & \cdots & a_{p2} \\ \vdots & & & \\ a_{1n} & a_{2n} & \cdots & a_{pn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_p \end{bmatrix} = \vec{\mathbf{0}}$$

is the same as $A\vec{\mathbf{x}} = \vec{\mathbf{0}}$ where A is $n \times p$ with p > n.

Thus, A has a free variable and $A\vec{x} = \vec{0}$ has a non-trivial solution.

This gives us a non-trivial solution to

$$x_1\vec{\mathbf{v_1}} + x_2\vec{\mathbf{v_2}} + \cdots + x_p\vec{\mathbf{v_p}} = \vec{\mathbf{0}}$$

Thus, $\{\vec{v_1}, \dots, \vec{v_p}\}$ must be linearly dependent. \Box

Give the dimension of each vector space

	[1	2	3	4	5	6]
1. ℝ ²	4. Let $A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0	-2	3	5	1
1. 112	0	0	0	0	0	0
2. ℝ ⁵	(a) col(A)					
3. ℝ ⁿ	(b) nul(A)					
	(c) row(A)					

1. Let A =
$$\begin{bmatrix} 1 & 24 & -13 & -12 \\ 1 & 3 & -2 & -1 \\ 7 & 0 & -3 & 4 \end{bmatrix}$$
. Find bases for col(A), nul(A), and row(A).

- 2. If A is 6×11 of rank 4, what is the dimension of nul(A)?
- 3. If A is the matrix corresponding to a one-one linear transformation $T : \mathbb{R}^4 \to \mathbb{R}^8$, what is the dimension of nul(A)? of row(A)? of nul(A^T)?