A vector space is a nonempty set of objects V, called vectors, which have two operations defined: *addition* of vectors and *multiplication by scalars* (real numbers), subject to the ten axioms listed below.

The axioms must hold for all vectors \vec{u} , \vec{v} , $\vec{w} \in V$ and for all scalars c and d.

- 1. $\vec{\mathbf{u}} + \vec{\mathbf{v}} \in V$
- 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$
- 3. $(\vec{\mathbf{u}} + \vec{\mathbf{v}}) + \vec{\mathbf{w}} = \vec{\mathbf{u}} + (\vec{\mathbf{v}} + \vec{\mathbf{w}})$
- 4. There exists a vector $\vec{\mathbf{0}} \in V$ such that $\vec{\mathbf{u}} + \vec{\mathbf{0}} = \vec{\mathbf{u}}$
- 5. For all $\vec{u} \in V$, there is a vector $-\vec{u} \in V$ such that $\vec{u} + (-\vec{u}) = \vec{0}$ 6. $c\vec{u} \in V$
- 7. $c(\vec{\mathbf{u}} + \vec{\mathbf{v}}) = c\vec{\mathbf{u}} + c\vec{\mathbf{v}}$
- 8. $(c+d)\vec{\mathbf{u}} = c\vec{\mathbf{u}} + d\vec{\mathbf{u}}$
- 9. $c(d\vec{\mathbf{u}}) = (cd)\vec{\mathbf{u}}$
- 10. $1\vec{u} = \vec{u}$

Talk with the people around you for a minute

 $H = \text{line in the plane through the origin and } \vec{\mathbf{v}} = \begin{vmatrix} 1 \\ 2 \end{vmatrix}$ is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

H = the 1st quadrant in the plane is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

 $H = \text{set of points on } y = x^2 \text{ is a subspace of } V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Talk with the people around you for a minute

Let
$$\vec{\mathbf{v_1}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\vec{\mathbf{v_2}} = \begin{bmatrix} -2 \\ 1 \\ -5 \end{bmatrix}$. Then $H = \text{Span} \{ \vec{\mathbf{v_1}}, \vec{\mathbf{v_2}} \}$ is a subspace of $V = \mathbb{R}^3$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

H = the 1st and 3rd quadrant in the plane is a subspace of $V = \mathbb{R}^2$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

Talk with the people around you for a minute

Let
$$A = \begin{bmatrix} 1 & 0 & -2 & 3 \\ 0 & 1 & 2 & -1 \end{bmatrix}$$

Then $H = \left\{ \vec{\mathbf{x}} \in \mathbb{R}^4 \mid A\vec{\mathbf{x}} = \vec{\mathbf{0}} \right\}$ is a subspace of $V = \mathbb{R}^4$

- (a) True, and I can explain why
- (b) True, but I am unsure why
- (c) False, and I can explain why
- (d) False, but I am unsure why
- (e) Errr. . .

$$\mathbf{Let} A = \begin{bmatrix} 2 & 6 & 2 & 8 \\ -3 & 1 & -3 & -8 \\ 3 & 4 & 3 & 10 \end{bmatrix}$$

1. Fill in the blank: nul(A) is a subspace of \mathbb{R} —

2. Is
$$\vec{\mathbf{x}} = \begin{bmatrix} 2 \\ -1 \\ 3 \\ -1 \end{bmatrix}$$
 in nul(A)?

- 3. Find a spanning set of vectors for nul(A)
- 4. Fill in the blank: col(A) is a subspace of \mathbb{R} —

5. Is
$$\vec{\mathbf{b}} = \begin{bmatrix} 44\\ -36\\ 51 \end{bmatrix}$$
 in col(A)?

6. Find a spanning set of vectors for col(A)