Diagonalizable:

A square matrix *A* is **diagonalizable** iff we can write $A = PDP^{-1}$ where *D* is diagonal.

Theorem 5.5:

A is diagonalizable iff *A* has *n* linearly independent eigenvectors. In particular, if $A = PDP^{-1}$ then the columns in *P* are *n* linearly independent eigenvectors of *A* and the entries in the diagonal of *D* are the corresponding eigenvalues of *A*.

Theorem 5.6:

If *A* is $n \times n$ with *n* distinct eigenvalues, then *A* is diagonalizable.

Theorem 7.1:

If *A* is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Orthogonally Diagonalizable

An $n \times n$ matrix *A* is **orthogonally diagonalizable** iff there is an orthogonal matrix *P* (so $P^{-1} = P^{T}$) and a diagonal matrix *D* such that

$$
A = PDP^{-1} = PDP^T
$$

Theorem 7.2:

An $n \times n$ matrix *A* is orthogonally diagonalizable iff *A* is a symmetric matrix.

Theorem 7.3: The Spectral Theorem for Symmetric Matrices

An $n \times n$ symmetric matrix *A* has the following properties:

- a. *A* has *n* real eigenvalues, counting multiplicities.
- b. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- c. The eigenspaces are mutually orthogonal.
- d. A is orthogonally diagonalizable.

Spectral Decomposition for Symmetric Matrices:

If *A* is an $n \times n$ symmetric matrix with orthonormal eigenvectors $\vec{u_1}, \vec{u_2}, \ldots, \vec{u_n}$ with corresponding eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, then the **spectral decomposition** of *A* is

$$
A = \lambda_1 \vec{\mathbf{u}_1} \vec{\mathbf{u}_1}^T + \lambda_2 \vec{\mathbf{u}_2} \vec{\mathbf{u}_2}^T + \cdots + \lambda_n \vec{\mathbf{u}_n} \vec{\mathbf{u}_n}^T
$$

Singular Values of an *m × n* **Matrix:**

Let *A* be an $m \times n$ matrix. Then $A^T A$ is an $n \times n$ symmetric matrix. The eigenvalues of A^TA are all nonnegative. Reorder so that the eigenvalues are ordered

$$
\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0
$$

The **singular values** of *A* are the square roots of the eigenvalues of A^TA :

$$
\sigma_1 = \sqrt{\lambda_1} \quad \geq \quad \sigma_2 = \sqrt{\lambda_2} \quad \geq \quad \cdots \quad \geq \quad \sigma_n = \sqrt{\lambda_n}
$$

Singular value decomposition:

Let *A* be an $m \times n$ matrix with rank *r*. Then there exists

• an $m \times n$ matrix $\Sigma = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix}$ where *D* is an $r \times r$ diagonal matrix with the first *r* singular values of *A*,

$$
\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0,
$$

on its diagonal,

- an $m \times m$ orthogonal matrix U , and
- an $n \times n$ orthogonal matrix V

such that

$$
A = U\Sigma V^T
$$