Let
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \\ 3 & 1 \end{bmatrix}$$
 and $\vec{\mathbf{b}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

- 1. Show that $A\vec{\mathbf{x}} = \vec{\mathbf{b}}$ is inconsistent
- 2. (a) Use the Mathematica command *Orthogonalize[]* to find an orthogonal basis for col(A)
 - (b) Use the Orthogonal Decomposition Theorem to find $\hat{\bf b}$, the projection of $\vec{\bf b}$ onto col(A)
 - (c) Verify that $\vec{z} = \vec{b} \hat{b}$ is orthogonal to both columns of A.
- 3. Solve $A\vec{\mathbf{x}} = \hat{\mathbf{b}}$

Consider the following data points:

- 4. Show that there is no cubic polynomial $p(t) = a_0 + a_1t + a_2t^2 + a_3t^3$ that passes through all of these points.
- 5. Find the best-fit cubic $\hat{p}(t)$
- 6. Graph the points and $\hat{p}(t)$ to verify your answer