1. Use the square and multiply algorithm to compute the following by hand:

(a) $5^9 \mod 9$ (b) $3^{30} \mod 25$

- 2. Let *n* = 3953
 - (a) Verify that $n = 59 \cdot 67$. Notice that both 59 and 67 are prime
 - (b) Use the Euclidean algorithm to show that $gcd(17, \phi(n)) = 1$
 - (c) Apply the Extended Euclidean algorithm to write $u \cdot 17 + v \cdot \phi(n) = 1$
 - (d) Conclude that $2477 \equiv 17^{-1} \mod \phi(n)$
 - (e) If Bob were to use n = 3953 for RSA, what are some values they could choose for $k_{pub} = (n, e)$ and $k_{pr} = d$?