Perform the following matrix calculations

Details of AES round structure

4.4 Internal Structure of AES

125

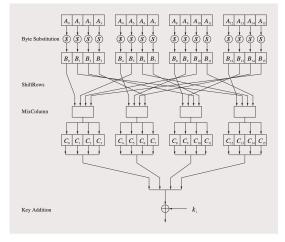


Fig. 4.3 AES round function for rounds $1, 2, \ldots, n_r - 1$

The Byte Substitution Layer / AES S-box

where the affine mapping is

 $MB'_i + v \mod 2$

with matrix M and vector v

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} b'_0 \\ b'_1 \\ b'_2 \\ b'_3 \\ b'_4 \\ b'_5 \\ b'_6 \\ b'_7 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \mod 2$$

Multiplicative inverses in $GF(2^8)$

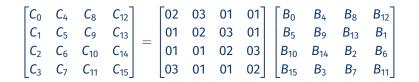
Table 4.2 Multiplicative inverse table in $GF(2^8)$ for bytes *xy* used within the AES S-box, with the irreducible polynomial $P(x) = x^8 + x^4 + x^3 + x + 1$

		Y															
		0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
	0	00	01	8D	F6	СВ	52	7B	D1	Ε8	4F	29	C0	в0	E1	E5	C7
	1	74	В4	AA	4B	99	2В	60	5F	58	3F	FD	СС	$\mathbf{F}\mathbf{F}$	40	ΕE	В2
	2	3A	6E	5A	F1	55	4D	A8	С9	C1	0A	98	15	30	44	A2	C2
	3	2C	45	92	6C	F3	39	66	42	F2	35	20	6F	77	ΒB	59	19
	4	1D	FE	37	67	2D	31	F5	69	Α7	64	AB	13	54	25	Ε9	09
	5	ED	5C	05	CA	4C	24	87	BF	18	3E	22	FΟ	51	ЕC	61	17
	6	16	5E	AF	D3	49	Α6	36	43	F4	47	91	DF	33	93	21	3в
	7	79	В7	97	85	10	В5	ΒA	3C	В6	70	DO	06	A1	FA	81	82
Х	8	83	7E	7F	80	96	73	ΒE	56	9B	9E	95	D9	F7	02	в9	A4
	9	DE	6A	32	6D	D8	8A	84	72	2A	14	9F	88	F 9	DC	89	9A
	А	FΒ	7C	2E	C3	8F	В8	65	48	26	С8	12	4A	CE	E7	D2	62
	В	0C	ΕO	1F	\mathbf{EF}	11	75	78	71	Α5	8E	76	3D	BD	BC	86	57
	С	0В	28	2F	AЗ	DA	D4	E4	OF	Α9	27	53	04	1B	\mathbf{FC}	AC	Ε6
	D	7A	07	AE	63	С5	DB	E2	ΕA	94	8B	С4	D5	9D	F8	90	6B
	Е	В1	0D	D6	EΒ	С6	0E	CF	AD	8 0	4E	D7	EЗ	5D	50	1E	В3
	F	5B	23	38	34	68	46	03	8C	DD	9C	7D	A0	CD	1A	41	1C

Table 4.3 AES S-Box: Substitution values in hexadecimal notation for input byte (*xy*)

										y							
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2 B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	$\mathbf{C}\mathbf{C}$	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1 B	6E	5A	A0	52	3B	D6	B 3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B 1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
х	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B 8	14	DE	5E	0B	DB
	А	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	С	BA	78	25	2E	1C	A6	B 4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C 1	1D	9E
	Е	E1	F8	98	11		D9			9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B 0	54	BB	16

Place output from byte substitution in a matrix


B_0	B ₄	B_8	<i>B</i> ₁₂
B_1	B_5	B 9	<i>B</i> ₁₃
B_2	<i>B</i> ₆	B_{10}	<i>B</i> ₁₄
B_3	B ₇	B ₁₁	<i>B</i> ₁₅

Perform the ShiftRows

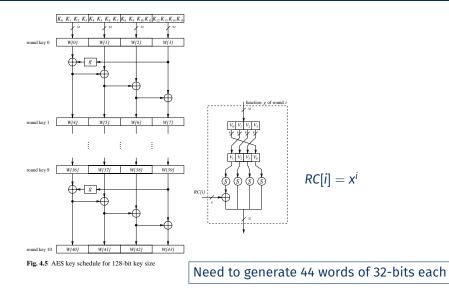
B_0	B ₄	B_8	<i>B</i> ₁₂	no shift
B_5	B 9	<i>B</i> ₁₃	<i>B</i> ₁	\leftarrow one position left shift
B_{10}	<i>B</i> ₁₄	B_2	<i>B</i> ₆	\leftarrow two positions left shift
<i>B</i> ₁₅	<i>B</i> ₃	B ₇	B ₁₁	\leftarrow three positions left shift

Compare to diagram

B₁₀ B₁₅ **B**4 B₉ **B**₁₃ **B**₂ **B**₇ **B**₁₂ **B**₆ B₁₁ B_0 B_5 B₁₄ B_3 B_8 B_1

Notice that all operations in the matrix multiplication are taking place in $GF(2^8)$!

$$\begin{bmatrix} C_0 & C_4 & C_8 & C_{12} \\ C_1 & C_5 & C_9 & C_{13} \\ C_2 & C_6 & C_{10} & C_{14} \\ C_3 & C_7 & C_{11} & C_{15} \end{bmatrix} = \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} B_0 & B_4 & B_8 & B_{12} \\ B_5 & B_9 & B_{13} & B_1 \\ B_{10} & B_{14} & B_2 & B_6 \\ B_{15} & B_3 & B_7 & B_{11} \end{bmatrix}$$


Notice that all operations in the matrix multiplication are taking place in $GF(2^8)$!

If the output from the Byte Substitution Layer is

B_0	<i>B</i> ₁	B ₂	B ₃	B 4	B ₅	B_6	B ₇	B ₈	B 9	B ₁₀	B ₁₁	B ₁₂	B ₁₃	B ₁₄	B ₁₅
2A	C2	1 <i>F</i>	43	8A	03	17	02	41	32	18	СВ	A4	20	9B	37

What is the output byte C_0 from the MixColumns layer?

The 128-bit AES Key Schedule (10 rounds)

The 192-bit AES Key Schedule (12 rounds)

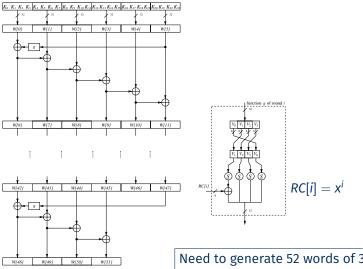
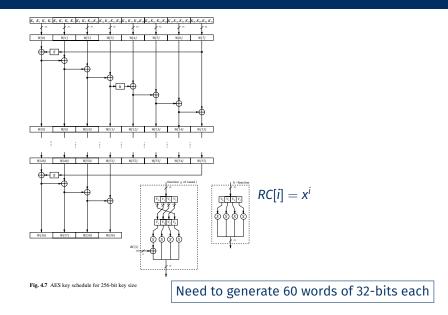



Fig. 4.6 AES key schedule for 192-bit key sizes

Need to generate 52 words of 32-bits each

The 256-bit AES Key Schedule (14 rounds)

