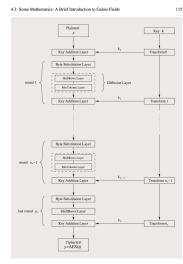
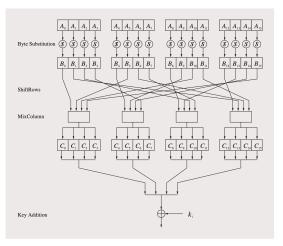
General structure of AES




Fig. 4.2 AES encryption block diagram

From Paar, Pelzl, and Güneysu

September 16, 2024

Details of AES round structure (128 bits)

4.4 Internal Structure of AES

125

Fig. 4.3 AES round function for rounds $1, 2, \ldots, n_r - 1$

From Paar, Pelzl, and Güneysu

Math 202 Cryptography (T. Ratliff)

September 16, 2024

1.
$$(x^3 + x^2 + 1) \cdot (x + 1)$$

2.
$$(x^3 + x + 1) \cdot (x^4 + x^2 + x)$$

3.
$$(x^3 + x^2 + x + 1) \cdot (x + 1)$$

- 1. Let $q(x) = x^3 + x + 1$. Perform the following calculations by hand in $\mathbb{Z}_2[x]/q(x) = GF(8)$
 - (a) $(x^2 + x + 1) \cdot (x^2 + 1)$
 - (b) $(x^2 + x + 1) \cdot (x + 1)$
 - (c) $(x^2 + x + 1) \cdot (x^2)$
 - (d) What is $(x^2 + x + 1)^{-1}$ in $\mathbb{Z}_2[x]/q(x)$?
- 2. Let $p(x) = x^8 + x^4 + x^3 + x + 1$. This is the polynomial specified in AES. Perform the following calculations by hand in $\mathbb{Z}_2[x]/p(x) = GF(2^8)$, recalling that we can specify any element of $GF(2^8)$ by a two-digit hex number.
 - (a) *B*5 · 35
 - (b) 21 · 31
 - (c) Verify that $C6^{-1} = E4$