Let P_1 and P_2 be two points on E

- If $P_1 = O$, then $P_1 + P_2 = P_2$ If $P_2 = O$, then $P_1 + P_2 = P_1$
- Otherwise, write $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$
 - If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 = -P_2$ in E and $P_1 + P_2 = O$
 - Otherwise, define

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \end{cases}$$

Then $P_1 + P_2 = (x_3, y_3)$ where

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$

December 4, 2024

Let $E: Y^2 = X^3 + 17X + 3$ over \mathbb{Z}_{59}^* and let P = (3, 50) and Q = (41, 1)

- 1. Show *P* and *Q* lie on $E(\mathbb{Z}_{59}^*)$ but do not lie on the curve if we do not reduce mod 59
- 2. Find P + Q by applying Theorem 6.6
- 3. Find 2P by applying Theorem 6.6
- 4. How could you use a "double-and-add" algorithm to compute 37P?

Elliptic Curve Diffie-Hellman Key Exchange

Trusted Party

- Generate $E(\mathbb{F}_p)$: $Y^2 = X^3 + AX + B$ and $P \in E(\mathbb{F}_p)$ of large prime order q
- Publish (p, A, B, P, q)

Alice

- Select n_A where $1 < n_A < q$
- Compute $Q_A = n_A P \in E(\mathbb{F}_p)$
- Send Q_A to Bob

Bob

- Select n_B where $1 < n_B < q$
- Compute $Q_B = n_B P \in E(\mathbb{F}_p)$
- Send Q_B to Alice

Shared key is
$$Q = n_A n_B P = n_B n_A P$$