

Note: The first 7 slides are from Advanced Crypto in Spring 2021

$$P_1 + O = P_1$$

what
$$1 = -P_1$$
?
 $-P_1 = (-2, -1)$

Line thru
$$P_1$$
 and P_2

$$slope = \frac{rise}{run} = \frac{3-1}{2-(-2)} = \frac{1}{2}$$

$$y-(=\frac{1}{2}(x-(-2)))$$

$$y=\frac{1}{2}x+2$$

$$To find 3rd point:$$

$$(\frac{1}{2}x+2)^2 = x^3-2x+5$$
Multiply suf, then $(x+2)$ and $(x-3)$

$$x=\frac{1}{4}$$

$$y=\frac{17}{8}$$

$$P_1+P_2=(\frac{1}{4})^{-\frac{17}{8}}$$

Example:
$$E: Y^2 = X^3 - 2X + 5$$
, $P_1 = (-2, 1)$ and $P_2 = (2, 3)$

Find 2P₁

Form temperal line

Slope of temperal line
$$\frac{dY}{dx}$$
 $\frac{d}{dx} y^2 = \frac{d}{dx} (x^3 - 2x + 5)$
 $2Y \frac{dY}{dx} = 3x^2 - 2$
 $\frac{dY}{dx} = \frac{3x^2 - 2}{2Y}$

At $P_1 = l - 2$, 1),

 $Y - 1 = 5(X + 2)$
 $Y = 5X + 11$
 $(5X + 11)^2 = X^3 - 2X + 5$
 $X = 29$
 $Y = 156$
 $2P_1 = (29, -156)$

Let P_1 and P_2 be two points on E

• If
$$P_1 = \mathcal{O}$$
, then $P_1 + P_2 = P_2$
If $P_2 = \mathcal{O}$, then $P_1 + P_2 = P_1$

- Otherwise, write $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$
 - If $x_1 = x_2$ and $y_1 = -y_2$, then $P_1 = -P_2$ in E and $P_1 + P_2 = \mathcal{O}$
 - Otherwise, define

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2\\ \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \end{cases}$$

Then $P_1 + P_2 = (x_3, y_3)$ where

$$x_3 = \lambda^2 - x_1 - x_2$$
 and $y_3 = \lambda(x_1 - x_3) - y_1$

$$E: Y^2 = X^3 - 2X + 5$$
, $P_1 = (-2, 1)$ and $P_2 = (2, 3)$.

Find $P_1 + P_2$

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \end{cases}$$

$$\lambda = \begin{cases} x_3 = \lambda^2 - x_1 - x_2, & y_3 = \lambda(x_1 - x_3) - y_1 \\ \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \end{cases}$$

$$\lambda = \begin{cases} \frac{3 - \zeta}{2 - \zeta - 2\zeta} = \frac{1}{2} \end{cases}$$

$$\lambda = \begin{cases} \frac{3 - \zeta}{2 - \zeta - 2\zeta} = \frac{1}{2} \end{cases}$$

$$\lambda = \begin{cases} \frac{3 - \zeta}{2 - \zeta - 2\zeta} = \frac{1}{2} \end{cases}$$

$$\lambda = \begin{cases} \frac{3 - \zeta}{2 - \zeta - 2\zeta} = \frac{1}{2} \end{cases}$$

$$x_3 = \lambda^2 - x_1 - x_2, \qquad y_3 = \lambda(x_1 - x_3) - y$$

$$x_{3} = (\frac{1}{2})^{2} - (\frac{1}{2})^{2} - (\frac{1}{2})^{2} = \frac{1}{2}(-2 - \frac{1}{4}) - 1$$

$$= \frac{1}{4} = -\frac{9}{8} - 1$$

$$y_3 = \frac{1}{2} \left(-2 - \frac{1}{4} \right) - 1$$

$$= \frac{1}{2} \left(-\frac{9}{4} \right) - 1$$

$$= -\frac{9}{8} - 1$$

$$= -\frac{17}{8}$$

E:
$$Y^2 = X^3 - 2X + 5$$
, $P_1 = (-2, 1)$

Find 2P₁

$$\lambda = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} & \text{if } P_1 \neq P_2 \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \end{cases}$$

$$\lambda = \begin{cases} \frac{3x_1^2 + A}{2y_1} & \text{if } P_1 = P_2 \\ \frac{3x_1^2 + A}{2y_1} & \text{if } P_2 = P_2 \end{cases}$$

$$\lambda = \frac{3(-2)^2 + (-2)}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda = \frac{3(-2)^2 + (-2)^2 + (-2)^2}{2(1)}$$

$$\lambda$$

1. Use Mathematica to draw the following elliptic curves

- (a) Let $E: Y^2 = X^3 5X + 6$ Verify $4A^3 + 27B^2 \neq 0$ How many points on E are their own additive inverse? i.e. How many points on E satisfy P = -P?
- (b) $E: Y^2 = X^3 4X + 1$ Verify $4A^3 + 27B^2 \neq 0$ How many points on E are their own additive inverse?
- (c) $E: Y^2 = X^3 3X + 2$ Verify $4A^3 + 27B^2 = 0$ By looking at the graph, why is this a problem for defining addition on E?
- (d) $E: Y^2 = X^3$ Verify $4A^3 + 27B^2 = 0$ By looking at the graph, why is this a problem for defining addition on E?

2. Consider the elliptic curve $E: Y^2 = X^3 - 6X + 5$

- (a) Verify that $P_1 = (-2,3)$ and $P_2 = (2,1)$ lie on E
- (b) Use the geometric description of addition on E to find $P_1 + P_2$
- (c) Use the geometric description of addition on E to find $2P_1$
- (d) Use Theorem 6.6 to verify your answers to (b) and (c)
- (e) Verify that $Q_1=\left(\frac{1}{4},-\frac{15}{8}\right)$ and $Q_2=\left(\frac{58}{9},\frac{413}{27}\right)$ lie on E
- (f) Use Theorem 6.6 to find $Q_2 + Q_1$ and $Q_1 Q_1$ Note: $-Q_1$ means the additive inverse of Q_1 in E

2