Alice wants to send the plaintext

x = "Meet at Dunkin Donuts at midnight. Come alone."

Alice wants to send the plaintext

x = "Meet at Dunkin Donuts at midnight. Come alone."

Then the ciphertext is

y = NFFU BUEV OLJO EPOV UTBU NJEO JHIU DPNF BMPO F

Bob responds with

y = XIJD IPOF UIFS FBSF TPNB OZ

What is the plaintext?

Bob responds with

$$y = XIJD IPOF UIFS FBSF TPNB OZ$$

What is the plaintext?

x = "Which one? There are so many."

1. Check 3 or 4 entries to verify that this is the multiplication table for \mathbb{Z}_7

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0 0 0 0 0 0	6	5	4	3	2	1

2. Calculate the following in \mathbb{Z}_7

(a)
$$3-5$$
, $-2-3$, 3^{-1} , 2^{-1}

(b)
$$4 \cdot 3^{-1}$$
, $2 \cdot 4^{-1}$, $3 \cdot 5^{-2}$

(c)
$$3^2$$
, 3^3 , 3^4 , 3^5 , 3^6 , 3^{12} , 3^{21}

3. Use the table to solve for *x*

(a)
$$3^x \equiv 5 \mod 7$$

(b)
$$5^x \equiv 2 \mod 7$$

(c)
$$2^x \equiv 3 \mod 7$$