1. Simplify each expression to a single numeric value

a.
$$\log_2(128)$$

c.
$$e^{3 \ln(5)}$$

b.
$$\log_3\left(\frac{1}{81}\right)$$

d.
$$ln(2e^2) - ln(2e^{-3})$$

2. Solve the given equation for x

a.
$$ln(x + 1) = 3$$

b.
$$ln(x + 3) + ln(x) = ln(4)$$

3. Write each expression as a single logarithm.

(a)
$$3 \ln(x) + 2 \ln(y)$$

(b)
$$\frac{1}{2}\log_2(x) - 2\log_2(y) + \log_2(z)$$

(c)
$$ln(7) + 3$$

4. Find a function of the form $f(x) = ae^{bx}$ with the given function values.

a.
$$f(0) = 2$$
, $f(2) = 5$ Hint: First plug $x = 0$ into $f(x)$ to solve for a

b.
$$f(0) = 4$$
, $f(3) = 1$

- 5. (a) Explain why $2 = e^{\ln(2)}$
 - (b) Use part (a) to explain why $2^{\square} = e^{\ln(2)\square}$
 - (c) Use part (b) to explain why $\log_2(x) = \frac{\ln(x)}{\ln(2)}$