Theorem 6.6: $E: Y^{2}=X^{3}+A X+B, \quad 4 A^{3}+27 B^{2} \neq 0$

Let P_{1} and P_{2} be two points on E

- If $P_{1}=\mathcal{O}$, then $P_{1}+P_{2}=P_{2}$ If $P_{2}=\mathcal{O}$, then $P_{1}+P_{2}=P_{1}$
- Otherwise, write $P_{1}=\left(x_{1}, y_{1}\right)$ and $P_{2}=\left(x_{2}, y_{2}\right)$
- If $x_{1}=x_{2}$ and $y_{1}=-y_{2}$, then $P_{1}=-P_{2}$ in E and $P_{1}+P_{2}=\mathcal{O}$
- Otherwise, define

$$
\lambda= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { if } P_{1} \neq P_{2} \\ \frac{3 x_{1}^{2}+A}{2 y_{1}} & \text { if } P_{1}=P_{2}\end{cases}
$$

Then $P_{1}+P_{2}=\left(x_{3}, y_{3}\right)$ where

$$
x_{3}=\lambda^{2}-x_{1}-x_{2} \quad \text { and } \quad y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}
$$

Let $E: Y^{2}=X^{3}+17 X+3$ over \mathbb{F}_{59} and let $P=(3,50)$ and $Q=(41,1)$

1. Show P and Q lie on $E\left(\mathbb{F}_{59}\right)$ but do not lie on the curve if we do not reduce mod 59
2. Find $P+Q$ by applying Theorem 6.6 by hand
3. Find $2 P$ by applying Theorem 6.6 by hand
4. Use the double and add algorithm to compute 37P

For this problem, you may use
https://andrea.corbellini.name/ecc/interactive/modk-add.html to add two points or to double a point.
5. According to Hasse's Theorem, what is the minimum number of points that an elliptic curve over \mathbb{F}_{59} can have? What is the maximum number? Is this consistent with the information from the website for our particular curve?

