Overview of where we are in the semester:

- Data Exchange: AES is a secure way to exchange messages Symmetric encryption scheme that requires a shared private key
- Question: How do you exchange the private key to begin with? Must use an public key (i.e. asymmetric) scheme, like DHKE or RSA

Diffie-Hellman Key Exchange in \mathbb{F}_{p}^{*}

- Security depends on the DHP being hard to solve
- If can solve the DLP $g^{x} \equiv h \bmod p$ then can solve DHP
- Shank's: collision algorithm, potentially requires large amount of storage
- Pollard's ρ : collision algorithm that uses $\mathcal{O}(1)$ storage
- Pohlig-Hellman: Breaks DLP into smaller DLP's based on factors of ord(g)
- Use Shank's or Pollard's ρ to solve smaller DLPs
- Use Chinese Remainder Theorem to reassemble into solution of larger DLP
- Reduces security of DLP to level of security based on largest factor of ord (g)
- Motivation for finding elements g of large prime order q in \mathbb{F}_{p} Exercise 1.33 gives method to find these elements with very high probability
- Still need to know how to find large primes p where $p-1$ has large prime factor q

Recall RSA

- Alice - Key Creation

- Choose secret primes p and q, form $N=p q$
- Choose exponent e with $\operatorname{gcd}(e, \phi(N))=1$
- Compute private $d \equiv e^{-1} \bmod \phi(N)$ using EEA or Fermat's Little Theorem
- Publish (N, e)
- Bob - Encrypt plaintext $m \in \mathbb{Z}_{N}$
- Use Alice's public key (N, e) to compute $c \equiv m^{e} \bmod N$
- Send ciphertext c to Alice
- Alice - Decrypt ciphertext c
- $c^{d} \equiv m^{d e} \bmod N \equiv m \bmod N$

Security of RSA

- (N, e) are public information
- If can figure out $\phi(N)=(p-1)(q-1)$, then easy to find private key d
- Security of RSA depends upon it being hard to factor $N=p q$
- How do we find large primes p and q ?

1. Find a Miller-Rabin witness for $n=2465$.

Perform this calculation by hand, although you can use your favorite computing device for modular arithmetic.
2. Show that $n=2^{1341}-19$ is composite by finding a Miller-Rabin witness.

The Mathematica notebook posted for today may be useful.
3. Find a Miller-Rabin witness for $n=2^{1279}-1$
4. Your goal is to find a 20-bit pseudoprime number n
(a) How many 20-bit numbers do you expect that you will need to pick, on average, before finding a prime?
(b) Use today's Mathematica notebook to find a 20-bit pseudoprime.

How confident are you that your n is a pseudoprime?
You may use Mathematica's RandomInteger[] command, but NOT the RandomPrime[] command. That would be cheesy.

