Overview of where we are in the semester:

- **Data Exchange:** AES is a secure way to exchange messages Symmetric encryption scheme that requires a shared private key
- **Question:** How do you exchange the private key to begin with? Must use an public key (i.e. asymmetric) scheme, like DHKE or RSA

Diffie-Hellman Key Exchange in \mathbb{F}_p^*

- Security depends on the DHP being hard to solve
- If can solve the DLP $g^x \equiv h \mod p$ then can solve DHP
 - Shank's: collision algorithm, potentially requires large amount of storage
 - Pollard's ρ : collision algorithm that uses $\mathcal{O}(1)$ storage
 - Pohlig-Hellman: Breaks DLP into smaller DLP's based on factors of ord(g)
 - + Use Shank's or Pollard's ρ to solve smaller DLPs
 - Use Chinese Remainder Theorem to reassemble into solution of larger DLP
 - Reduces security of DLP to level of security based on largest factor of ord(g)
- Motivation for finding elements g of large prime order q in \mathbb{F}_p Exercise 1.33 gives method to find these elements with very high probability
- Still need to know how to find large primes p where p 1 has large prime factor q

Recall RSA

• Alice – Key Creation

- Choose secret primes p and q, form N = pq
- Choose exponent *e* with $gcd(e, \phi(N)) = 1$
- Compute private $d \equiv e^{-1} \mod \phi(N)$ using EEA or Fermat's Little Theorem
- Publish (N, e)
- Bob Encrypt plaintext $m \in \mathbb{Z}_N$
 - Use Alice's public key (N, e) to compute $c \equiv m^e \mod N$
 - Send ciphertext c to Alice
- Alice Decrypt ciphertext c
 - $c^d \equiv m^{de} \mod N \equiv m \mod N$

- (*N*, *e*) are public information
- If can figure out $\phi(N) = (p-1)(q-1)$, then easy to find private key d
- Security of RSA depends upon it being hard to factor N = pq
- How do we find large primes p and q?

- 1. Find a Miller-Rabin witness for n = 2465. Perform this calculation by hand, although you can use your favorite computing device for modular arithmetic.
- 2. Show that $n = 2^{1341} 19$ is composite by finding a Miller-Rabin witness. The Mathematica notebook posted for today may be useful.
- 3. Find a Miller-Rabin witness for $n = 2^{1279} 1$
- 4. Your goal is to find a 20-bit pseudoprime number *n*
 - (a) How many 20-bit numbers do you expect that you will need to pick, on average, before finding a prime?
 - (b) Use today's Mathematica notebook to find a 20-bit pseudoprime. How confident are you that your *n* is a pseudoprime?

You may use Mathematica's RandomInteger[] command, but NOT the RandomPrime[] command. That would be cheesy.