The Pohlig-Hellman Algorithm

Let G be a group and $g \in G$ of order N, where $N=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}$ is the prime factorization The following algorithm solves the DLP $g^{x}=h$

1. Create k DLPs, one for each prime factor of N :

$$
\begin{array}{lll}
\text { Let } N_{1}=\frac{N}{q_{1}^{e_{1}}}, & g_{1}=g^{N_{1}}, & h_{1}=h^{N_{1}} \text { then } \\
g_{1}^{y_{1}}=h_{1} \\
\text { Let } N_{2}=\frac{N}{q_{2}^{e_{2}}}, & g_{2}=g^{N_{2}}, & h_{2}=h^{N_{2}} \text { then } \\
g_{2}^{y_{2}}=h_{2}, \quad \text { etc. }
\end{array}
$$

2. Use your favorite method to solve these k DLPs, giving solutions $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$
3. Use the Chinese Remainder Theorem to find a solution x to the system of equations

$$
x \equiv y_{1} \bmod q_{1}^{e_{1}}, \quad x \equiv y_{2} \bmod q_{2}^{e_{2}}, \quad \ldots \quad x \equiv y_{k} \bmod q_{k}^{e_{k}}
$$

4. x is a solution to the original DLP $g^{x}=h$

The Mathematica notebook posted for today will be quite useful

1. Solve $5^{x} \equiv 7983 \bmod 8017$ using the Pohlig-Hellman algorithm.
2. Consider the DLP $g^{x} \equiv h \bmod p$ where
$g=10, h=50613106319218605201866538939818, p=129003898576076751531908549775811$
(a) Consider applying Shank's Babystep-Giantstep algorithm to this DLP directly.
(i) How long would each list be?
(ii) How many digits are in the binary expansion of p ?
(iii) How many bytes are required to store each integer in the lists?
(iv) How many terabytes are required to store each list?

Let's not use Shank's directly, ok?
(b) Solve the DLP using the Pohlig-Hellman algorithm with Shank's to solve the smaller DLPs.

What is the longest list you create when applying Shank's in your solution?

