Recall Diffie-Hellman Key Exchange

Trusted publishes p and $g \in \mathbb{F}_{p}^{*}$ of large prime order

- Alice picks secret $a \in \mathbb{Z}$, sends $A \equiv g^{a} \bmod p$ to Bob Bob picks secret $b \in \mathbb{Z}$, sends $B \equiv g^{b} \bmod p$ to Alice
- Alice computes $A^{\prime} \equiv B^{a} \bmod p$

Bob computes $B^{\prime} \equiv A^{b} \bmod p$

- Shared key is $A^{\prime}=B^{\prime}$

Diffie-Hellman parameters in https://www.ietf.org/rfc/rfc3526.txt

The 8192-bit mod p group uses

$$
p=2^{8192}-2^{8128}-1+2^{64} \cdot\left(\left\lfloor 2^{8062} \cdot \pi\right\rfloor+4743158\right)
$$

Why is the DLP $g^{x} \equiv h \bmod p$ hard?

If g has large order, then exponentiation mod p mixes really well

Defintion of a group

A group consists of a set G and a rule \star, for combining two elements $a, b \in G$ to obtain $a \star b \in G$. In addition, \star must have the following three properties:

- Identity Law: There exists $e \in G$ such that $e \star a=a \star e=a$ for all $a \in G$
- Inverse Law: For every $a \in G$, there exists $a^{-1} \in G$ such that $a \star a^{-1}=a^{-1} \star a=e$
- Associative Law: $a \star(b \star c)=(a \star b) \star c$ for all $a, b, c \in G$

1. (a) Fill in the addition table for $\mathbb{Z} / 4 \mathbb{Z}$, then relabel $\{0,1,2,3\} \rightarrow\{e, a, b, c\}$ and rebuild the table

+	0	1	2	3
0				
1				
2				
3				

+	e	a	b	c
e				
a				
b				
c				

(b) Fill in the multiplication table for \mathbb{F}_{5}^{*}, then relabel $\{1,2,3,4\} \rightarrow\{e, a, c, b\}$ and rebuild the table

\times	1	2	3	4
1				
2				
3				
4				

\times	e	a	b	c
e				
a				
b				
c				

(c) What do you notice about your relabeled tables?
2. For each group G and element $a \in G$, compute the order of G and the order of a. Verify that ord $(a)||G|$
(a) $G=\mathbb{Z} / 12 \mathbb{Z}, a=7$
(b) $G=\mathbb{Z} / 12 \mathbb{Z}, a=8$
(c) $G=(\mathbb{Z} / 12 \mathbb{Z})^{*}, a=7$
(d) $G=\mathbb{F}_{13}, a=3$
(e) $G=\mathbb{F}_{13}^{*}, a=3$

