Trusted publishes p and $g \in \mathbb{F}_p^*$ of large prime order

- Alice picks secret $a \in \mathbb{Z}$, sends $A \equiv g^a \mod p$ to Bob Bob picks secret $b \in \mathbb{Z}$, sends $B \equiv g^b \mod p$ to Alice
- Alice computes $A' \equiv B^a \mod p$ Bob computes $B' \equiv A^b \mod p$
- Shared key is A' = B'

Diffie-Hellman parameters in https://www.ietf.org/rfc/rfc3526.txt

The 8192-bit mod *p* group uses

$$p = 2^{8192} - 2^{8128} - 1 + 2^{64} \cdot (\lfloor 2^{8062} \cdot \pi \rfloor + 4743158)$$

If g has large order, then exponentiation mod p mixes really well

Solve $7^{x} \equiv 5314 \mod 7919$

Defintion of a group

A **group** consists of a set *G* and a rule \star , for combining two elements $a, b \in G$ to obtain $a \star b \in G$. In addition, \star must have the following three properties:

- Identity Law: There exists $e \in G$ such that $e \star a = a \star e = a$ for all $a \in G$
- Inverse Law: For every $a \in G$, there exists $a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$
- Associative Law: $a \star (b \star c) = (a \star b) \star c$ for all $a, b, c \in G$

1. (a) Fill in the addition table for $\mathbb{Z}/4\mathbb{Z}$, then relabel $\{0, 1, 2, 3\} \rightarrow \{e, a, b, c\}$ and rebuild the table

+	0	1	2	3		+	e	а	b	С	
0					-	е					
1						а					
2						b					
3						С					

(b) Fill in the multiplication table for \mathbb{F}_5^* , then relabel $\{1, 2, 3, 4\} \rightarrow \{e, a, c, b\}$ and rebuild the table

\times	1	2	3	4		\times	е	а	b	С	
1					-	е					
2						а					
3						b					
4						С					

(c) What do you notice about your relabeled tables?

2. For each group G and element $a \in G$, compute the order of G and the order of a. Verify that $ord(a) \mid |G|$

(a)
$$G = \mathbb{Z}/12\mathbb{Z}$$
, $a = 7$

- (b) $G = \mathbb{Z}/12\mathbb{Z}$, a = 8
- (c) $G = (\mathbb{Z}/12\mathbb{Z})^*$, a = 7
- (d) $G = \mathbb{F}_{13}, a = 3$
- (e) $G = \mathbb{F}_{13}^*, a = 3$