Goldreich, Goldwasser, Halevi (GGH) Encryption, based on CVP

Alice: Key creation
Pick good basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{V_{n}}$ and put in rows of matrix V Choose matrix U with integer coefficients such that $\operatorname{det}(U)= \pm 1$
Compute bad basis as rows $\overrightarrow{w_{1}}, \ldots, \overrightarrow{w_{n}}$ of $W=U V$
Publish public key $\overrightarrow{w_{1}}, \ldots, \overrightarrow{w_{n}}$
Bob: Encryption
Plaintext vector $\vec{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n}$
$\vec{v}=\vec{m} W=m_{1} \overrightarrow{w_{1}}+\cdots+m_{n} \overrightarrow{W_{n}} \in L$
Choose small random vector $\vec{r} \in \mathbb{R}^{n}$
Send ciphertext $\vec{e}=\vec{v}+\vec{r} \in \mathbb{R}^{n}$
Alice: Decryption
Use good basis to recover $\vec{v} \in L$ (will see details shortly) $\vec{m}=\vec{v} W^{-1}$

1. Use the values of V and W given in the Mathematica notebook for today. Let $L \subset \mathbb{R}^{3}$ be the lattice with basis in the rows of V.
(a) Verify that W is also a basis for L.
(b) Compute the Hadamard ratios of V and W.

Is V a good choice for a private key for GGH?
Is W a good choice for a public key for GGH?
(c) Encrypt $m=\{3,7,8\}$ using the ephemeral $r=\{-1,1,1\}$

What is the ciphertext?
(d) Verify your ciphertext by decrypting using V.

What plaintext do you get if you decrypt using the skewed basis W ?
(e) You receive the ciphertext $e=\{-828256,-634219,467126\}$. Use V to decrypt.

2. Use the public basis W for this problem given in the Mathematica notebook.

(a) Compute the Hadamard ratio of W to confirm that it is a good choice for a public key.
(b) Encrypt the plaintext $m=\{0,1,0,0,0,0,1,0,1,1,0,1,1,0,1\}$ using
$r=\{0,-1,-1,-1,1,-1,1,1,0,0,1,0,-1,-1,0\}$
What is the ciphertext?
(c) Suppose Eve intercepts the message
$e_{1}=\{-414029,1700490,960750,-1305481,681165,258496,576404$, $-394471,75691,-922500,327721,1509749,-310890,-71686,-5264\}$ and tries to decrypt using W. What will Eve get for the plaintext?
(d) Now use Mathematica's LatticeReduce[W] to apply the LLL algorithm to generate a more orthogonal basis V for the lattice.
(i) Compute the Hadamard ratio of V.
(ii) Use V to decrypt e_{1}. What is the actual plaintext?

